Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; 71(4): 1115-1126, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37878426

RESUMEN

OBJECTIVE: define a new methodology to build multi-compartment lumped-elements equivalent circuit models for neuron/electrode systems. METHODS: the equivalent circuit topology is derived by careful scrutiny of accurate and validated multiphysics finite-elements method (FEM) simulations that couple ion transport in the intra- and extracellular fluids, activation of the neuron membrane ion channels, and signal acquisition by the electronic readout. RESULTS: robust and accurate circuit models are systematically derived, suited to represent the dynamics of the sensed extracellular signals over a wide range of geometrical/physical parameters (neuron and electrode sizes, electrolytic cleft thicknesses, readout input impedance, non-uniform ion channel distributions). FEM simulations point out phenomena that escape an accurate description by equivalent circuits; notably: steric effects in the thin electrolytic cleft and the impact of extracellular ion transport on the reversal potentials of the Hodgkin-Huxley neuron model. CONCLUSION: our multi-compartment equivalent circuits match accurately the FEM simulations. They unveil the existence of an optimum number of compartments for accurate circuit simulation. FEM simulations suggest that while steric effects are in most instances negligible, the extracellular ion transport affects the reversal potentials and consequently the recorded signal if the electrolytic cleft becomes thinner than approximately 100 nm. SIGNIFICANCE: the proposed methodology and circuit models improve upon the existing area and point contact models. The coupling between the extracellular concentrations and reversal potential highlighted by FEM simulations emerges as a challenge for future developments in lumped-element modeling of the neuron/sensor interface.


Asunto(s)
Agaricales , Análisis de Elementos Finitos , Electrodos , Neuronas/fisiología , Impedancia Eléctrica , Simulación por Computador
2.
Animals (Basel) ; 13(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37894012

RESUMEN

In aquaculture, the transportation of live fish is a crucial but stress-inducing practice, necessitating a thorough understanding of its impact on fish welfare. This study aimed to assess the physiological stress response of meagre (Argyrosomus regius) juveniles during a 24 h commercial transport by quantifying muscle cortisol levels using a specific radioimmunoassay. Additionally, an immunohistochemical approach was used to detect and localize the cellular distribution of oxidative-stress-related biomarkers within various tissues and organs. The results demonstrated a significant increase in muscle cortisol levels following the loading procedure, remaining elevated above basal levels throughout the 24 h transport period. This effect may be attributed to either insufficient time for recovery from the loading stress or prolonged transportation-related stress. Immunostaining for all the antibodies we examined was observed in multiple tissues and organs, but we found no notable variations among the various transport phases. In conclusion, the observed stress response appears to be mainly linked to loading stress and the transport process itself, emphasizing the importance of implementing appropriate operational procedures to safeguard fish well-being during transport. Nonetheless, the unaltered distribution of oxidative stress markers between the control and transported groups suggests that the experienced stress might be within tolerable limits.

3.
Philos Trans A Math Phys Eng Sci ; 380(2228): 20210013, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35658681

RESUMEN

Neuron and neural network studies are remarkably fostered by novel stimulation and recording systems, which often make use of biochips fabricated with advanced electronic technologies and, notably, micro- and nanoscale complementary metal-oxide semiconductor (CMOS). Models of the transduction mechanisms involved in the sensor and recording of the neuron activity are useful to optimize the sensing device architecture and its coupling to the readout circuits, as well as to interpret the measured data. Starting with an overview of recently published integrated active and passive micro/nanoelectrode sensing devices for in vitro studies fabricated with modern (CMOS-based) micro-nano technology, this paper presents a mixed-mode device-circuit numerical-analytical multiscale and multiphysics simulation methodology to describe the neuron-sensor coupling, suitable to derive useful design guidelines. A few representative structures and coupling conditions are analysed in more detail in terms of the most relevant electrical figures of merit including signal-to-noise ratio. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.


Asunto(s)
Óxidos , Semiconductores , Simulación por Computador , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...