Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mBio ; : e0090724, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953636

RESUMEN

The continued evolution of severe acute respiratory syndrome 2 (SARS-CoV-2) requires persistent monitoring of its subvariants. Omicron subvariants are responsible for the vast majority of SARS-CoV-2 infections worldwide, with XBB and BA.2.86 sublineages representing more than 90% of circulating strains as of January 2024. To better understand parameters involved in viral transmission, we characterized the functional properties of Spike glycoproteins from BA.2.75, CH.1.1, DV.7.1, BA.4/5, BQ.1.1, XBB, XBB.1, XBB.1.16, XBB.1.5, FD.1.1, EG.5.1, HK.3, BA.2.86 and JN.1. We tested their capacity to evade plasma-mediated recognition and neutralization, binding to angiotensin-converting enzyme 2 (ACE2), their susceptibility to cold inactivation, Spike processing, as well as the impact of temperature on Spike-ACE2 interaction. We found that compared to the early wild-type (D614G) strain, most Omicron subvariants' Spike glycoproteins evolved to escape recognition and neutralization by plasma from individuals who received a fifth dose of bivalent (BA.1 or BA.4/5) mRNA vaccine and improve ACE2 binding, particularly at low temperatures. Moreover, BA.2.86 had the best affinity for ACE2 at all temperatures tested. We found that Omicron subvariants' Spike processing is associated with their susceptibility to cold inactivation. Intriguingly, we found that Spike-ACE2 binding at low temperature was significantly associated with growth rates of Omicron subvariants in humans. Overall, we report that Spikes from newly emerged Omicron subvariants are relatively more stable and resistant to plasma-mediated neutralization, present improved affinity for ACE2 which is associated, particularly at low temperatures, with their growth rates.IMPORTANCEThe persistent evolution of SARS-CoV-2 gave rise to a wide range of variants harboring new mutations in their Spike glycoproteins. Several factors have been associated with viral transmission and fitness such as plasma-neutralization escape and ACE2 interaction. To better understand whether additional factors could be of importance in SARS-CoV-2 variants' transmission, we characterize the functional properties of Spike glycoproteins from several Omicron subvariants. We found that the Spike glycoprotein of Omicron subvariants presents an improved escape from plasma-mediated recognition and neutralization, Spike processing, and ACE2 binding which was further improved at low temperature. Intriguingly, Spike-ACE2 interaction at low temperature is strongly associated with viral growth rate, as such, low temperatures could represent another parameter affecting viral transmission.

2.
Viruses ; 16(3)2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38543708

RESUMEN

Throughout the SARS-CoV-2 pandemic, several variants of concern (VOCs) have been identified, many of which share recurrent mutations in the spike glycoprotein's receptor-binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we present the case of an immunosuppressed patient that developed distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. These mutations were acquired without the patient being treated with mAbs nor convalescent sera and without them developing a detectable immune response to the virus. We also provide additional evidence for a viral reservoir based on intra-host phylogenetics, which led to a viral substrain that evolved elsewhere in the patient's body, colonizing their upper respiratory tract (URT). The presence of SARS-CoV-2 viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable, and potential explanations for long-COVID cases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Síndrome Post Agudo de COVID-19 , Sueroterapia para COVID-19 , Huésped Inmunocomprometido , Anticuerpos Monoclonales , Mutación , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales , Anticuerpos Neutralizantes
3.
Euro Surveill ; 29(7)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38362622

RESUMEN

The Canadian Sentinel Practitioner Surveillance Network reports mid-season 2023/24 influenza vaccine effectiveness (VE) of 63% (95% CI: 51-72) against influenza A(H1N1)pdm09, lower for clade 5a.2a.1 (56%; 95% CI: 33-71) than clade 5a.2a (67%; 95% CI: 48-80), and lowest against influenza A(H3N2) (40%; 95% CI: 5-61). The Omicron XBB.1.5 vaccine protected comparably well, with VE of 47% (95% CI: 21-65) against medically attended COVID-19, higher among people reporting a prior confirmed SARS-CoV-2 infection at 67% (95% CI: 28-85).


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Estaciones del Año , Subtipo H3N2 del Virus de la Influenza A/genética , Eficacia de las Vacunas , Canadá/epidemiología , Vigilancia de Guardia , Vacunación , Estudios de Casos y Controles
4.
Clin Infect Dis ; 78(3): 613-624, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-37675577

RESUMEN

BACKGROUND: There is a need to understand the duration of infectivity of primary and recurrent coronavirus disease 2019 (COVID-19) and identify predictors of loss of infectivity. METHODS: Prospective observational cohort study with serial viral culture, rapid antigen detection test (RADT) and reverse transcription polymerase chain reaction (RT-PCR) on nasopharyngeal specimens of healthcare workers with COVID-19. The primary outcome was viral culture positivity as indicative of infectivity. Predictors of loss of infectivity were determined using multivariate regression model. The performance of the US Centers for Disease Control and Prevention (CDC) criteria (fever resolution, symptom improvement, and negative RADT) to predict loss of infectivity was also investigated. RESULTS: In total, 121 participants (91 female [79.3%]; average age, 40 years) were enrolled. Most (n = 107, 88.4%) had received ≥3 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine doses, and 20 (16.5%) had COVID-19 previously. Viral culture positivity decreased from 71.9% (87/121) on day 5 of infection to 18.2% (22/121) on day 10. Participants with recurrent COVID-19 had a lower likelihood of infectivity than those with primary COVID-19 at each follow-up (day 5 odds ratio [OR], 0.14; P < .001]; day 7 OR, 0.04; P = .003]) and were all non-infective by day 10 (P = .02). Independent predictors of infectivity included prior COVID-19 (adjusted OR [aOR] on day 5, 0.005; P = .003), an RT-PCR cycle threshold [Ct] value <23 (aOR on day 5, 22.75; P < .001) but not symptom improvement or RADT result.The CDC criteria would identify 36% (24/67) of all non-infectious individuals on day 7. However, 17% (5/29) of those meeting all the criteria had a positive viral culture. CONCLUSIONS: Infectivity of recurrent COVID-19 is shorter than primary infections. Loss of infectivity algorithms could be optimized.


Asunto(s)
COVID-19 , Adulto , Femenino , Humanos , COVID-19/diagnóstico , Prueba de COVID-19 , Personal de Salud , Estudios Prospectivos , SARS-CoV-2 , Masculino
5.
Viruses ; 15(9)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37766332

RESUMEN

While an important part of the world's population is vaccinated against SARS-CoV-2, new variants continue to emerge. We observe that even after a fifth dose of the mRNA bivalent vaccine, most vaccinated individuals have antibodies that poorly neutralize several Omicron subvariants, including BQ.1.1, XBB, XBB.1.5, FD.1.1, and CH.1.1. However, Fc-effector functions remain strong and stable over time against new variants, which may partially explain why vaccines continue to be effective. We also observe that donors who have been recently infected have stronger antibody functional activities, including neutralization and Fc-effector functions, supporting the observations that hybrid immunity leads to better humoral responses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos , Vacunas Combinadas , ARN Mensajero/genética
6.
J Clin Virol ; 165: 105517, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321149

RESUMEN

OBJECTIVE: To develop a new method for reliable and rapid determination of the fitness of SARS-CoV-2 variants of concern. METHODS: Competition experiments between two SARS-CoV-2 variants were performed in cells of the upper (nasal human airway epithelium) and lower (Calu-3 cells) respiratory tracts followed by quantification of variant ratios by droplet digital reverse transcription (ddRT)-PCR. RESULTS: In competition experiments, the delta variant outcompeted the alpha variant in both cells of the upper and lower respiratory tracts. A 50/50% mixture of delta and omicron variants indicated a predominance of omicron in the upper respiratory tract whereas delta predominated in the lower respiratory tract. There was no evidence of recombination events between variants in competition as assessed by whole gene sequencing. CONCLUSION: Differential replication kinetics were shown between variants of concern which may explain, at least partly, the emergence and disease severity associated with new SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Humanos , Transcripción Reversa , SARS-CoV-2/genética , Secuenciación Completa del Genoma , Reacción en Cadena de la Polimerasa , Prueba de COVID-19
7.
Viruses ; 15(6)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37376574

RESUMEN

Since the beginning of the SARS-CoV-2 pandemic, several variants of concern (VOCs), such as the Alpha, Beta, Gamma, Delta and Omicron variants, have arisen and spread worldwide. Today, the predominant circulating subvariants are sublineages of the Omicron variant, which have more than 30 mutations in their Spike glycoprotein compared to the ancestral strain. The Omicron subvariants were significantly less recognized and neutralized by antibodies from vaccinated individuals. This resulted in a surge in the number of infections, and booster shots were recommended to improve responses against these variants. While most studies mainly measured the neutralizing activity against variants, we and others previously reported that Fc-effector functions, including antibody-dependent cellular cytotoxicity (ADCC), play an important role in humoral responses against SARS-CoV-2. In this study, we analyzed Spike recognition and ADCC activity against several Omicron subvariants by generating cell lines expressing different Omicron subvariant Spikes. We tested these responses in a cohort of donors, who were recently infected or not, before and after a fourth dose of mRNA vaccine. We showed that ADCC activity is less affected than neutralization by the antigenic shift of the tested Omicron subvariant Spikes. Moreover, we found that individuals with a history of recent infection have higher antibody binding and ADCC activity against all Omicron subvariants than people who were not recently infected. With an increase in the number of reinfections, this study helps better understand Fc-effector responses in the context of hybrid immunity.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2/genética , Citotoxicidad Celular Dependiente de Anticuerpos , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas de ARNm
8.
Microb Genom ; 9(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37052589

RESUMEN

The severity and progression of lung disease are highly variable across individuals with cystic fibrosis (CF) and are imperfectly predicted by mutations in the human gene CFTR, lung microbiome variation or other clinical factors. The opportunistic pathogen Pseudomonas aeruginosa (Pa) dominates airway infections in most CF adults. Here we hypothesized that within-host genetic variation of Pa populations would be associated with lung disease severity. To quantify Pa genetic variation within CF sputum samples, we used deep amplicon sequencing (AmpliSeq) of 209 Pa genes previously associated with pathogenesis or adaptation to the CF lung. We trained machine learning models using Pa single nucleotide variants (SNVs), microbiome diversity data and clinical factors to classify lung disease severity at the time of sputum sampling, and to predict lung function decline after 5 years in a cohort of 54 adult CF patients with chronic Pa infection. Models using Pa SNVs alone classified lung disease severity with good sensitivity and specificity (area under the receiver operating characteristic curve: AUROC=0.87). Models were less predictive of lung function decline after 5 years (AUROC=0.74) but still significantly better than random. The addition of clinical data, but not sputum microbiome diversity data, yielded only modest improvements in classifying baseline lung function (AUROC=0.92) and predicting lung function decline (AUROC=0.79), suggesting that Pa AmpliSeq data account for most of the predictive value. Our work provides a proof of principle that Pa genetic variation in sputum tracks lung disease severity, moderately predicts lung function decline and could serve as a disease biomarker among CF patients with chronic Pa infections.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Adulto , Humanos , Fibrosis Quística/complicaciones , Pseudomonas aeruginosa/genética , Pulmón , Infecciones por Pseudomonas/etiología , Progresión de la Enfermedad , Nucleótidos
9.
Vaccines (Basel) ; 11(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36851122

RESUMEN

The Omicron BQ.1.1 variant is now the major SARS-CoV-2 circulating strain in many countries. Because of the many mutations present in its Spike glycoprotein, this variant is resistant to humoral responses elicited by monovalent mRNA vaccines. With the goal to improve immune responses against Omicron subvariants, bivalent mRNA vaccines have recently been approved in several countries. In this study, we measure the capacity of plasma from vaccinated individuals, before and after a fourth dose of mono- or bivalent mRNA vaccine, to recognize and neutralize the ancestral (D614G) and the BQ.1.1 Spikes. Before and after the fourth dose, we observe a significantly better recognition and neutralization of the ancestral Spike. We also observe that fourth-dose vaccinated individuals who have been recently infected better recognize and neutralize the BQ.1.1 Spike, independently of the mRNA vaccine used, than donors who have never been infected or have an older infection. Our study supports that hybrid immunity, generated by vaccination and a recent infection, induces higher humoral responses than vaccination alone, independently of the mRNA vaccine used.

10.
Cell Rep ; 42(1): 111998, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36656710

RESUMEN

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have recently emerged, becoming the dominant circulating strains in many countries. These variants contain a large number of mutations in their spike glycoprotein, raising concerns about vaccine efficacy. In this study, we evaluate the ability of plasma from a cohort of individuals that received three doses of mRNA vaccine to recognize and neutralize these Omicron subvariant spikes. We observed that BA.4/5 and BQ.1.1 spikes are markedly less recognized and neutralized compared with the D614G and other Omicron subvariant spikes tested. Also, individuals who have been infected before or after vaccination present better humoral responses than SARS-CoV-2-naive vaccinated individuals, thus indicating that hybrid immunity generates better humoral responses against these subvariants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunas Sintéticas , Mutación , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Vacunas de ARNm
11.
Ann Intern Med ; 176(1): 67-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508736

RESUMEN

BACKGROUND: Monkeypox, a viral zoonotic disease, is causing a global outbreak outside of endemic areas. OBJECTIVE: To characterize the outbreak of monkeypox in Montréal, the first large outbreak in North America. DESIGN: Epidemiologic and laboratory surveillance data and a phylogenomic analysis were used to describe and place the outbreak in a global context. SETTING: Montréal, Canada. PATIENTS: Probable or confirmed cases of monkeypox. MEASUREMENTS: Epidemiologic, clinical, and demographic data were aggregated. Whole-genome sequencing and phylogenetic analysis were performed for a set of outbreak sequences. The public health response and its evolution are described. RESULTS: Up to 18 October 2022, a total of 402 cases of monkeypox were reported mostly among men who have sex with men (MSM), most of which were suspected to be acquired through sexual contact. All monkeypox genomes nested within the B.1 lineage. Montréal Public Health worked closely with the affected communities to control the outbreak, becoming the first jurisdiction to offer 1 dose of the Modified Vaccinia Ankara-Bavarian Nordic vaccine as preexposure prophylaxis (PrEP) to those at risk in early June 2022. Two peaks of cases were seen in early June and July (43 and 44 cases per week, respectively) followed by a decline toward near resolution of the outbreak in October. Reasons for the biphasic peak are not fully elucidated but may represent the tempo of vaccination and/or several factors related to transmission dynamics and case ascertainment. LIMITATIONS: Clinical data are self-reported. Limited divergence among sequences limited genomic epidemiologic conclusions. CONCLUSION: A large outbreak of monkeypox occurred in Montréal, primarily among MSM. Successful control of the outbreak rested on early and sustained engagement with the affected communities and rapid offer of PrEP vaccination to at-risk persons. PRIMARY FUNDING SOURCE: None.


Asunto(s)
Mpox , Minorías Sexuales y de Género , Masculino , Humanos , Filogenia , Homosexualidad Masculina , Mpox/epidemiología , Brotes de Enfermedades , América del Norte/epidemiología , Autoinforme
12.
Viruses ; 14(10)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36298733

RESUMEN

SARS-CoV-2 continues to infect millions of people worldwide. The subvariants arising from the variant-of-concern (VOC) Omicron include BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4, and BA.5. All possess multiple mutations in their Spike glycoprotein, notably in its immunogenic receptor-binding domain (RBD), and present enhanced viral transmission. The highly mutated Spike glycoproteins from these subvariants present different degrees of resistance to recognition and cross-neutralisation by plasma from previously infected and/or vaccinated individuals. We have recently shown that the temperature affects the interaction between the Spike and its receptor, the angiotensin converting enzyme 2 (ACE2). The affinity of RBD for ACE2 is significantly increased at lower temperatures. However, whether this is also observed with the Spike of Omicron and sub-lineages is not known. Here we show that, similar to other variants, Spikes from Omicron sub-lineages bind better the ACE2 receptor at lower temperatures. Whether this translates into enhanced transmission during the fall and winter seasons remains to be determined.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , SARS-CoV-2/genética , Temperatura , Glicoproteína de la Espiga del Coronavirus/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Mutación
13.
Cell Rep ; 38(9): 110429, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35216664

RESUMEN

Continuous emergence of SARS-CoV-2 variants of concern (VOCs) is fueling the COVID-19 pandemic. Omicron (B.1.1.529) rapidly spread worldwide. The large number of mutations in its Spike raise concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses elicits antibodies that efficiently recognize Spikes from different VOCs. Here, we evaluate the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously infected individuals who received their BNT162b2 mRNA vaccine 16 weeks apart. Omicron Spike is recognized less efficiently than D614G, Alpha, Beta, Gamma, and Delta Spikes. We compare with plasma activity from participants receiving a short (4 weeks) interval regimen. Plasma from individuals of the long-interval cohort recognize and neutralize better the Omicron Spike compared with those who received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Vacuna BNT162/administración & dosificación , Esquemas de Inmunización , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/análisis , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , Estudios de Cohortes , Femenino , Células HEK293 , Humanos , Inmunización Secundaria/métodos , Masculino , Persona de Mediana Edad , Quebec , SARS-CoV-2/patogenicidad , Factores de Tiempo , Vacunación/métodos , Potencia de la Vacuna , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Adulto Joven , Vacunas de ARNm/administración & dosificación , Vacunas de ARNm/inmunología
14.
mSystems ; 6(4): e0088921, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34427503

RESUMEN

Vibrio cholerae can cause a range of symptoms, from severe diarrhea to asymptomatic infection. Previous studies using whole-genome sequencing (WGS) of multiple bacterial isolates per patient showed that V. cholerae can evolve modest genetic diversity during symptomatic infection. To further explore the extent of V. cholerae within-host diversity, we applied culture-based WGS and metagenomics to a cohort of both symptomatic and asymptomatic cholera patients from Bangladesh. While metagenomics allowed us to detect more mutations in symptomatic patients, WGS of cultured isolates was necessary to detect V. cholerae diversity in asymptomatic carriers, likely due to their low V. cholerae load. Using both metagenomics and isolate WGS, we report three lines of evidence that V. cholerae hypermutators evolve within patients. First, we identified nonsynonymous mutations in V. cholerae DNA repair genes in 5 out of 11 patient metagenomes sequenced with sufficient coverage of the V. cholerae genome and in 1 of 3 patients with isolate genomes sequenced. Second, these mutations in DNA repair genes tended to be accompanied by an excess of intrahost single nucleotide variants (iSNVs). Third, these iSNVs were enriched in transversion mutations, a known hallmark of hypermutator phenotypes. While hypermutators appeared to generate mostly selectively neutral mutations, nonmutators showed signs of convergent mutation across multiple patients, suggesting V. cholerae adaptation within hosts. Our results highlight the power and limitations of metagenomics combined with isolate sequencing to characterize within-patient diversity in acute V. cholerae infections, while providing evidence for hypermutator phenotypes within cholera patients. IMPORTANCE Pathogen evolution within patients can impact phenotypes such as drug resistance and virulence, potentially affecting clinical outcomes. V. cholerae infection can result in life-threatening diarrheal disease or asymptomatic infection. Here, we describe whole-genome sequencing of V. cholerae isolates and culture-free metagenomic sequencing from stool of symptomatic cholera patients and asymptomatic carriers. Despite the typically short duration of cholera, we found evidence for adaptive mutations in the V. cholerae genome that occur independently and repeatedly within multiple symptomatic patients. We also identified V. cholerae hypermutator phenotypes within several patients, which appear to generate mainly neutral or deleterious mutations. Our work sets the stage for future studies of the role of hypermutators and within-patient evolution in explaining the variation from asymptomatic carriage to symptomatic cholera.

15.
J Infect Dis ; 223(2): 342-351, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32610345

RESUMEN

BACKGROUND: Susceptibility to Vibrio cholerae infection is affected by blood group, age, and preexisting immunity, but these factors only partially explain who becomes infected. A recent study used 16S ribosomal RNA amplicon sequencing to quantify the composition of the gut microbiome and identify predictive biomarkers of infection with limited taxonomic resolution. METHODS: To achieve increased resolution of gut microbial factors associated with V. cholerae susceptibility and identify predictors of symptomatic disease, we applied deep shotgun metagenomic sequencing to a cohort of household contacts of patients with cholera. RESULTS: Using machine learning, we resolved species, strains, gene families, and cellular pathways in the microbiome at the time of exposure to V. cholerae to identify markers that predict infection and symptoms. Use of metagenomic features improved the precision and accuracy of prediction relative to 16S sequencing. We also predicted disease severity, although with greater uncertainty than our infection prediction. Species within the genera Prevotella and Bifidobacterium predicted protection from infection, and genes involved in iron metabolism were also correlated with protection. CONCLUSION: Our results highlight the power of metagenomics to predict disease outcomes and suggest specific species and genes for experimental testing to investigate mechanisms of microbiome-related protection from cholera.


Asunto(s)
Cólera/diagnóstico , Cólera/microbiología , Metagenómica , Vibrio cholerae/fisiología , Biomarcadores , Susceptibilidad a Enfermedades , Microbioma Gastrointestinal , Metagenoma , Metagenómica/métodos , Filogenia , Pronóstico , Curva ROC , Índice de Severidad de la Enfermedad
16.
Microb Genom ; 3(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29306353

RESUMEN

Cholera is a severe, water-borne diarrhoeal disease caused by toxin-producing strains of the bacterium Vibrio cholerae. Comparative genomics has revealed 'waves' of cholera transmission and evolution, in which clones are successively replaced over decades and centuries. However, the extent of V. cholerae genetic diversity within an epidemic or even within an individual patient is poorly understood. Here, we characterized V. cholerae genomic diversity at a micro-epidemiological level within and between individual patients from Bangladesh and Haiti. To capture within-patient diversity, we isolated multiple (8 to 20) V. cholerae colonies from each of eight patients, sequenced their genomes and identified point mutations and gene gain/loss events. We found limited but detectable diversity at the level of point mutations within hosts (zero to three single nucleotide variants within each patient), and comparatively higher gene content variation within hosts (at least one gain/loss event per patient, and up to 103 events in one patient). Much of the gene content variation appeared to be due to gain and loss of phage and plasmids within the V. cholerae population, with occasional exchanges between V. cholerae and other members of the gut microbiota. We also show that certain intra-host variants have phenotypic consequences. For example, the acquisition of a Bacteroides plasmid and non-synonymous mutations in a sensor histidine kinase gene both reduced biofilm formation, an important trait for environmental survival. Together, our results show that V. cholerae is measurably evolving within patients, with possible implications for disease outcomes and transmission dynamics.


Asunto(s)
Cólera/epidemiología , Cólera/microbiología , Variación Genética , Vibrio cholerae/genética , Bangladesh/epidemiología , Evolución Molecular , Mutación con Ganancia de Función , Transferencia de Gen Horizontal , Genómica , Haití/epidemiología , Humanos , Mutación con Pérdida de Función , Plásmidos/genética , Mutación Puntual , Vibrio cholerae/clasificación , Secuenciación Completa del Genoma
17.
Nat Microbiol ; 2: 16240, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27991885

RESUMEN

Some microorganisms can transition from an environmental lifestyle to a pathogenic one1-3. This ecological switch typically occurs through the acquisition of horizontally acquired virulence genes4,5. However, the genomic features that must be present in a population before the acquisition of virulence genes and emergence of pathogenic clones remain unknown. We hypothesized that virulence adaptive polymorphisms (VAPs) circulate in environmental populations and are required for this transition. We developed a comparative genomic framework for identifying VAPs, using Vibrio cholerae as a model. We then characterized several environmental VAP alleles to show that while some of them reduced the ability of clinical strains to colonize a mammalian host, other alleles conferred efficient host colonization. These results show that VAPs are present in environmental bacterial populations before the emergence of virulent clones. We propose a scenario in which VAPs circulate in the environment and become selected and enriched under certain ecological conditions, and finally a genomic background containing several VAPs acquires virulence factors that allow for its emergence as a pathogenic clone.

18.
Proc Natl Acad Sci U S A ; 112(44): 13609-14, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483462

RESUMEN

Nunavik, Québec suffers from epidemic tuberculosis (TB), with an incidence 50-fold higher than the Canadian average. Molecular studies in this region have documented limited bacterial genetic diversity among Mycobacterium tuberculosis isolates, consistent with a founder strain and/or ongoing spread. We have used whole-genome sequencing on 163 M. tuberculosis isolates from 11 geographically isolated villages to provide a high-resolution portrait of bacterial genetic diversity in this setting. All isolates were lineage 4 (Euro-American), with two sublineages present (major, n = 153; minor, n = 10). Among major sublineage isolates, there was a median of 46 pairwise single-nucleotide polymorphisms (SNPs), and the most recent common ancestor (MRCA) was in the early 20th century. Pairs of isolates within a village had significantly fewer SNPs than pairs from different villages (median: 6 vs. 47, P < 0.00005), indicating that most transmission occurs within villages. There was an excess of nonsynonymous SNPs after the diversification of M. tuberculosis within Nunavik: The ratio of nonsynonymous to synonymous substitution rates (dN/dS) was 0.534 before the MRCA but 0.777 subsequently (P = 0.010). Nonsynonymous SNPs were detected across all gene categories, arguing against positive selection and toward genetic drift with relaxation of purifying selection. Supporting the latter possibility, 28 genes were partially or completely deleted since the MRCA, including genes previously reported to be essential for M. tuberculosis growth. Our findings indicate that the epidemiologic success of M. tuberculosis in this region is more likely due to an environment conducive to TB transmission than a particularly well-adapted strain.


Asunto(s)
Mycobacterium tuberculosis/genética , Genes Bacterianos , Genética de Población , Humanos , Inuk , Polimorfismo de Nucleótido Simple , Quebec/epidemiología , Selección Genética , Tuberculosis/epidemiología , Tuberculosis/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...