Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Foods ; 12(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37959068

RESUMEN

The microbial ecology fundamentals of raw milk and long-ripened cheeses consist of a complex interaction between starter lactic acid bacteria (SLAB) and non-starter LAB (NSLAB). Although NSLAB aromatic properties are paramount, other phenotypic traits need to be considered for their use as adjunct cultures, such as the capability to endure technological parameters encountered during cheesemaking. The present study focused on the isolation and characterization of NSLAB from spontaneously fermented raw cow's milk coming from 20 dairies that produce Grana Padano PDO cheese. From 122 isolates, the screening process selected the 10 most diverse strains belonging to Lacticaseibacillus spp. to be phenotypically characterized. The strains were tested for their growth performance in milk in combination with the application of technological stresses, for their ability to produce volatile compounds after their growth in milk, and for their ability to use different nutrient sources and resist chemicals. The complex characterization qualified the strains 5959_Lbparacasei and 5296_Lbparacasei as the best candidates to be used as adjunct strains in the production of raw milk and long-ripened cheeses, provided that antibiotic resistance is measured before their employment. Other strains with interesting aromatic capabilities but lower heat resistance were 5293_Lbparacasei, 5649_Lbparacasei and 5780_Lbparacasei, which could be candidates as adjunct strains for uncooked cheese production.

2.
Front Microbiol ; 14: 1196879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649628

RESUMEN

Introduction: Mozzarella di Bufala Campana PDO cheese (MBC) is a globally esteemed Italian cheese. The traditional cheesemaking process of MBC relies on natural whey starter culture, water buffalo's milk, and the local agroecosystem. Methods: In this study, the microbial ecology of intermediate samples of MBC production, coming from two dairies with slightly different cheesemaking technology (dairy M large producer, and dairy C medium-small), was investigated using 16S rRNA amplicon sequencing. This research aimed to provide insights into the dynamics of microbial consortia involved in various cheesemaking steps. Results and discussion: All samples, except for raw buffalo milk, exhibited a core microbiome predominantly composed of Streptococcus spp. and Lactobacillus spp., albeit with different ratios between the two genera across the two MBC producers. Notably, the microbiota of the brine from both dairies, analyzed using 16S amplicon sequencing for the first time, was dominated by the Lactobacillus and Streptococcus genera, while only dairy C showed the presence of minor genera such as Pediococcus and Lentilactobacillus. Intriguingly, the final mozzarella samples from both producers displayed an inversion in the dominance of Lactobacillus spp. over Streptococcus spp. in the microbiota compared to curd samples, possibly attributable to the alleviation of thermal stress following the curd stretching step. In conclusion, the different samples from the two production facilities did not exhibit significant differences in terms of the species involved in MBC cheesemaking. This finding confirms that the key role in the MBC cheesemaking process lies with a small-sized microbiome primarily composed of Streptococcus and Lactobacillus spp.

3.
Appl Microbiol Biotechnol ; 106(21): 7113-7128, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36194262

RESUMEN

DinJ-YafQ is a bacterial type II TA system formed by the toxin RNase YafQ and the antitoxin protein DinJ. The activity of YafQ and DinJ has been rigorously studied in Escherichia coli, but little has been reported about orthologous systems identified in different microorganisms. In this work, we report an in vitro and in vivo functional characterization of YafQ and DinJ identified in two different strains of Lacticaseibacillus paracasei and isolated as recombinant proteins. While DinJ is identical in both strains, the two YafQ orthologs differ only for the D72G substitution in the catalytic site. Both YafQ orthologs digest ribosomal RNA, albeit with different catalytic efficiencies, and their RNase activity is neutralized by DinJ. We further show that DinJ alone or in complex with YafQ can bind cooperatively to a 28-nt inverted repeat overlapping the -35 element of the TA operon promoter. Atomic force microscopy imaging of DinJ-YafQ in complex with DNA harboring the cognate site reveals the formation of different oligomeric states that prevent the binding of RNA polymerase to the promoter. A single amino acid substitution (R13A) within the RHH DNA-binding motif of DinJ is sufficient to abolish DinJ and DinJ-YafQ DNA binding in vitro. In vivo experiments confirm the negative regulation of the TA promoter by DinJ and DinJ-YafQ and unveil an unexpected high expression-related toxicity of the gfp reporter gene. A model for the binding of two YafQ-(DinJ)2-YafQ tetramers to the promoter inverted repeat showing the absence of protein-protein steric clash is also presented. KEY POINTS: • The RNase activity of L. paracasei YafQ toxin is neutralized by DinJ antitoxin. • DinJ and DinJ-YafQ bind to an inverted repeat to repress their own promoter. • The R13A mutation of DinJ abolishes DNA binding of both DinJ and DinJ-YafQ.


Asunto(s)
Antitoxinas , Proteínas Bacterianas , Toxinas Bacterianas , Lacticaseibacillus paracasei , Antitoxinas/metabolismo , Toxinas Bacterianas/genética , Proteínas Recombinantes/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , ARN Ribosómico , Proteínas Bacterianas/genética
4.
Front Nutr ; 9: 858716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662951

RESUMEN

The market value of vanilla is constantly growing, as it is the aroma most appreciated by consumers worldwide. The key component of the aroma of vanilla beans is vanillin, which can be directly extracted from the plant, produced by chemical synthesis, or by bioconversion of natural precursors. Due to the increasing consumers' demand for products labeled as "natural," extraction from vanilla pods results in a more valuable aroma source. Once the extraction is completed, what remains are the exhausted beans that still contain small seeds and other compounds, including varying amounts of vanillin trapped in the cellular structures of the plant. The application of fermentation of exhausted vanilla beans is proposed here as a strategy to recover "natural" vanillin and other valuable aroma compounds as a result of the metabolic conversion by lactic acid bacteria (LAB). The aim of this study was to verify the fermentability of exhausted vanilla beans by-products for their valorization, allowing the recovery of high-value molecules or new applications in food products. Design of Experiment (DoE) was used to screen a library of LAB strains to identify the best condition of fermentation in response to varying cultivation conditions. A comparison between mono and co-culture of LAB was assessed. Moreover, sensory panel tests and the evaluation of the aromatic components by Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry analysis were carried out to better understand the modification of the aroma profile after fermentation. Fermentation with LAB changed the volatile profile and sensory characteristics of the exhausted vanilla beans and represents a promising method for the valorization of these by-products.

5.
Foods ; 11(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35407149

RESUMEN

The food industry must ensure the stability of the products, and this is often achieved by exposing foods to heat treatments that are able to ensure the absence of pathogenic or spoilage microorganisms. These treatments are different in terms of temperature and duration and could lead to a loss in nutritional and sensory value. Moreover, some types of microorganisms manage to survive these treatments thanks to the sporification process. The addition of antimicrobials can become necessary, but at present, consumers are more inclined toward natural products, avoiding synthetic and chemical additives. Antimicrobials from plants could be a valuable option and, in this context, a patent concerning an antimicrobial extract from fermented plant substrate was recently tested against foodborne pathogens revealing high antimicrobial activity. The objective of this study was the creation of a model for the evaluation and subsequent prediction of the combined effect of different process and product variables, including antimicrobial addition, on the inhibition and reduction of spore germination of target microorganisms, Alicyclobacillus acidoterrestris and Clostridium pasteurianum, responsible for spoilage of tomato-based products.

6.
Foods ; 11(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35159627

RESUMEN

Latilactobacillus sakei (L. sakei), widely used as a starter culture in fermented sausages, is a species adapted to meat environments. Its ability to survive for a long time in such products is due to the exploitation of different metabolic pathways to gain energy (hexose and pentose sugar fermentation, amino acids catabolism, etc.). Since L. sakei demonstrates high phenotypic and metabolic strain biodiversity, in this work, a metabolomic approach was used to compare five strains of different origins. They were cultivated in a defined medium with glucose or ribose at two concentrations, and analyzed through nuclear magnetic resonance (1H-NMR) spectroscopy to monitor amino acid consumptions and accumulation of organic acids and aroma compounds. The results showed that all the strains were able to use arginine, especially when cultivated with ribose, while serine was consumed mainly in the presence of glucose. Aroma compounds (i.e., diacetyl and acetoin) were mainly accumulated in samples with ribose. These aspects are relevant for starter cultures selection, to confer specific features to fermented sausages, and to optimize the fermentations. Moreover, the use of 1H-NMR allowed the fast identification of different classes of compounds (without derivatization or extraction procedures), providing a powerful tool to increase the knowledge of the metabolic diversity of L. sakei.

7.
Front Microbiol ; 13: 1092224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713157

RESUMEN

Lactic Acid Bacteria (LAB) exert a fundamental activity in cheese production, as starter LAB in curd acidification, or non-starter LAB (NSLAB) during ripening, in particular in flavor formation. NSLAB originate from the farm and dairy environment, becoming natural contaminants of raw milk where they are present in very low concentrations. Afterward, throughout the different cheesemaking processes, they withstand chemical and physical stresses becoming dominant in ripened cheeses. However, despite a great body of knowledge is available in the literature about NSLAB effect on cheese ripening, the investigations regarding their presence and abundance in raw milk are still poor. With the aim to answer the initial question: "which and how many LAB are present in cow raw milk used for cheese production?," this review has been divided in two main parts. The first one gives an overview of LAB presence in the complex microbiota of raw milk through the meta-analysis of recent taxonomic studies. In the second part, we present a collection of data about LAB quantification in raw milk by culture-dependent analysis, retrieved through a systematic review. Essentially, the revision of data obtained by plate counts on selective agar media showed an average higher concentration of coccoid LAB than lactobacilli, which was found to be consistent with meta-taxonomic analysis. The advantages of the impedometric technique applied to the quantification of LAB in raw milk were also briefly discussed with a focus on the statistical significance of the obtainable data. Furthermore, this approach was also found to be more accurate in highlighting that microorganisms other than LAB are the major component of raw milk. Nevertheless, the variability of the results observed in the studies based on the same counting methodology, highlights that different sampling methods, as well as the "history" of milk before analysis, are variables of great importance that need to be considered in raw milk analysis.

8.
Foods ; 10(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069051

RESUMEN

To prevent foodborne diseases and extend shelf-life, antimicrobial agents may be used in food to inhibit the growth of undesired microorganisms. In addition to the prevention of foodborne diseases, another huge concern of our time is the recovery of agri-food byproducts. In compliance with these challenges, the aim of this work was to more deeply investigate the antimicrobial activity of extracts derived from fermented tomato, melon, and carrot byproducts, previously studied. All the fermented extracts had antimicrobial activity both in vitro and in foodstuff, showing even higher activity than commercial preservatives, tested for comparison against spoilage microorganisms and foodborne pathogens such as Salmonella spp., L. monocytogenes, and B. cereus. These promising results highlight an unstudied aspect for the production of innovative natural preservatives, exploitable to improve the safety and shelf-life of various categories of foodstuff.

9.
Microorganisms ; 9(3)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33800997

RESUMEN

The analysis of bacterial genomes is a potent tool to investigate the distribution of specific traits related to the ability of surviving in particular environments. Among the traits associated with the adaptation to hostile conditions, toxin-antitoxin (TA) systems have recently gained attention in lactic acid bacteria. In this work, genome sequences of Lacticaseibacillus strains of dairy origin were compared, focusing on the distribution of type I TA systems homologous to Lpt/RNAII and of the most common type II TA systems. A high number of TA systems have been identified spread in all the analyzed strains, with type I TA systems mainly located on plasmid DNA. The type II TA systems identified in these strains highlight the diversity of encoded toxins and antitoxins and their organization. This study opens future perspectives on the use of genomic data as a resource for the study of TA systems distribution and prevalence in microorganisms of industrial relevance.

10.
Foods ; 10(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810435

RESUMEN

Food waste and byproducts are generated along the entire food processing and storage chain. The large amount of waste deriving from the whole process represents not only a great economic loss but also an important ethical and environmental issue in terms of failure to recycle potentially reusable materials. New, clear strategies are needed to limit the amount of waste produced and, at the same time, promote its enhancement for further conversion and application to different industrial fields. This review gives an overview of the biological approaches used so far to exploit agri-food wastes and byproducts. The application of solid-state fermentation by different microorganisms (fungi, yeasts, bacteria) to produce several value-added products was analyzed, focusing on the exploitation of lactic acid bacteria as workhorses for the production of flavoring compounds.

11.
Front Microbiol ; 11: 581658, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133050

RESUMEN

Cheese microbiota contribute significantly to the final characteristics of cheeses due to the growth and interaction between cheese microorganisms during processing and ripening. For raw milk cheeses, such as Parmigiano Reggiano (PR), the microbiota derive from the raw milk itself, the dairy environment, and the starter. The process of cheese making and time of ripening shape this complex ecosystem through the selection of different species and biotypes that will drive the quality of the final product by performing functions of their metabolism such as proteolysis. The diversity in the final peptide and amino acid composition of the cheese is thus mostly linked to the diversity of this microbiota. The purpose of this study was to get more insight into the factors affecting PR cheese diversity and, more specifically, to evaluate whether the composition of the bacterial community of cheeses along with the specific peptide composition are more affected by the ripening times or by the cheese making process. To this end, the microbiota and the peptide fractions of 69 cheese samples (from curd to cheese ripened 24 months) were analyzed during 6 complete PR production cycles, which were performed in six different dairies located in the PR production area. The relation among microbial dynamics, peptide evolution, and ripening times were investigated in this unique and tightly controlled production and sampling set up. The study of microbial and peptide moieties in products from different dairies - from curd to at least 12 months, the earliest time from which the cheese can be sold, and up to a maximum of 24 months of ripening - highlighted the presence of differences between samples coming from different dairies, probably due to small differences in the cheese making process. Besides these differences, however, ripening time had by far the greatest impact on microbial dynamics and, consequently, on peptide composition.

12.
Food Res Int ; 135: 109284, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32527479

RESUMEN

Caciotta is the name used to define a type of Italian semi-hard cheese Caciotta-type cheese. Due to the short ripening time, pasteurization is necessary to eliminate the potential pathogenic bacteria, which may be present in raw milk, causing also the reduction of ripened cheese flavor. The purpose of this research was to evaluate the effect of a selected wild Lactobacillus paracasei strain experimentally used as adjunct culture to enhance the flavour formation in a short-ripened caciotta-type cheese. An integrated polyphasic approach was used to compare the experimental and control Caciotta produced in a company located in Emilia Romagna region (Italy). It was demonstrated how the L. paracasei 4341 was able to develop in curd and cheese interacting with the acidifying commercial starter. The main acidifying starter species, were differently affected by the presence of the adjunct culture. Streptococcus thermophilus shown comparable behavior in all cheese-making step of control and experimental Caciotta, while Lactobacillus delbrueckii subsp bulgaricus, growth was slowed down by the presence of the adjunct culture during the whole ripening time. The higher amount of volatile compounds and organic acids due to the adjunct L. paracasei 4341 lead to a clear differentiation of the experimental Caciotta respect to the control, in terms of aromatic profile, color, texture and sensorial perception.


Asunto(s)
Queso , Lacticaseibacillus paracasei , Queso/análisis , Microbiología de Alimentos , Italia , Gusto
13.
Food Res Int ; 129: 108860, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32036924

RESUMEN

Natural starter cultures are undefined multiple-strains culture communities of mostly thermophilic lactic acid bacteria (LAB), in association with minor amounts of mesophilic bacteria, which structure could be affected by small changes in the parameters of the cheese/whey-making process. This study aims to investigate the complex microbiota of natural whey starter (NWS) used in Parmigiano Reggiano (PR) cheese-making, focusing on both the absolute and relative abundance of bacterial species and on the modification of the bacterial community under environmental and technological pressures. To reach this purpose a combined approach, using quantitative PCR (qPCR) and High-Throughput Sequencing (HTS), was used to investigate the bacterial dynamics of 91 whey samples collected during different steps of PR cheese-making, in one dairy, through two different lines of production, one Conventional and one Organic, over a 10 weeks period. Our results highlighted that NWS used for the production of PR cheese is a dynamic microbial community, which adapts to the different technological parameters encountered in the cheese/NWS manufacturing process, while retaining a high level of resilience of the thermophilic LAB species mainly involved in the steps of curd acidification and the early maturation process. Differences were also observed in bacterial species diversity between samples from Conventional and Organic line but, in conclusion, NWS resulted to be shaped by technological treatments, regardless of its initial different composition.


Asunto(s)
Bacterias/clasificación , Queso/microbiología , Microbiología de Alimentos , Suero Lácteo , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Humanos , Microbiota , ARN Ribosómico 16S/genética
14.
Microorganisms ; 8(1)2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31963444

RESUMEN

Autochthonous lactic acid bacteria (LAB) play a key role in the development of cheese flavor. As the pasteurization treatment on raw milk causes the elimination of LAB, secondary starter cultures are used in cheese manufacture to obtain cheeses with improved and standardized flavors. In this work, strains of the L. casei group isolated from traditional Italian cheeses were screened for their phenotypic features of technological interest for use as secondary starters. Their milk acidifying performance and the production of volatile compounds when grown in milk were evaluated. Simultaneously, the acetoin metabolic pathway presence was screened in the strains and assessed for its transcriptional activation. The results showed that the analyzed strains, despite belonging to taxonomically-related species, vary greatly according to the measured phenotypes. Four strains among the fourteen screened could be potentially used as adjunct cultures for cheese-making processes. The strain that showed the highest production of acetoin upregulated the aspartate pathway. An increased knowledge of volatile compounds' production and acidifying properties of LAB strains isolated from traditional dairy products might guide the selection of strains for industrial applications.

15.
Microorganisms ; 7(10)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614503

RESUMEN

Toxin-antitoxin (TA) systems are widely distributed in bacterial genomes and are involved in the adaptive response of microorganisms to stress conditions. Few studies have addressed TA systems in Lactobacillus and their role in the adaptation to food environments and processes. In this work, for six strains belonging to L. casei group isolated from dairy products, the expression of DinJ-YafQ TA system was investigated after exposure to various food-related stresses (nutrient starvation, low pH, high salt concentration, oxidative stress, and high temperature), as well as to the presence of antibiotics. In particular, culturability and DinJ-YafQ expression were evaluated for all strains and conditions by plate counts and RT qPCR. Among all the food-related stress conditions, only thermal stress was capable to significantly affect culturability. Furthermore, exposure to ampicillin significantly decreased the culturability of two L. rhamnosus strains. The regulation of DinJ-YafQ TA system resulted strain-specific; however, high temperature was the most significant stress condition able to modulate DinJ-YafQ expression. The increasing knowledge about TA systems activity and regulation might offer new perspectives to understand the mechanisms that L. casei group strains exploit to adapt to different niches or production processes.

16.
Sci Rep ; 9(1): 7645, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31114007

RESUMEN

DinJ-YafQ is a type II TA system comprising the ribosome-dependent RNase YafQ toxin and the DinJ antitoxin protein. Although the module has been extensively characterized in Escherichia coli, little information is available for homologous systems in lactic acid bacteria. In this study, we employed bioinformatics tools to identify DinJ-YafQ systems in Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus species, commonly used in biotechnological processes. Among a total of nineteen systems found, two TA modules from Lactobacillus paracasei and two modules from Lactobacillus rhamnosus wild strains were isolated and their activity was verified by growth assays in Escherichia coli either in liquid and solid media. The RNase activity of the YafQ toxins was verified in vivo by probing mRNA dynamics and metabolism with single-cell Thioflavin T fluorescence. Our findings demonstrate that, albeit DinJ-YafQ TA systems are widely distributed in lactic acid bacteria, only few are fully functional, while others have lost toxicity even though they maintain high sequence identity with wild type YafQ and a likely functional antitoxin protein.


Asunto(s)
Toxinas Bacterianas/genética , Lactobacillus/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Sitios de Unión , Lactobacillus/clasificación , Lactobacillus/metabolismo , Filogenia , Unión Proteica
17.
Front Microbiol ; 9: 2784, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524400

RESUMEN

In this study, four strains of Lactobacillus casei, as viable cells or cell-free extracts (CFE), were added to elderberry juice in order to evaluate their effect on phenolic and aromatic profile. Two of them were able to grow in juice while the others showed zero-growth. The same strains were lysed and added as extracts in elderberry juice. Multivariate statistical analysis show a separation among samples containing growing cells, non-growing cells, CFE, highlighting the particularities of specific strains. Juices added with CFE presented the highest amount of esters. The strains showing growth phenotype cause an increase of phenyllactic acids. The highest concentration of volatile compounds, particularly of alcohols, terpenes and norisoprenoids (responsible for typical elderberry notes) was observed in samples with strains showing zero-growth. Moreover, a significant increase in anthocyanin content was observed in these samples, suggesting the possible use of Lactobacillus for increasing specific molecules, even for non-multiplying bacterial cell. Considering that this is the first study concerning the use of non-growing cells in fruit juice, the potential of strains is still to be explored and it may have a significant technological application in the development of a microbial collection useful for fruit juice industry.

18.
Front Microbiol ; 9: 2866, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524419

RESUMEN

Members of the Lactobacillus casei group, including species classified currently as L. casei, L. paracasei, and L. rhamnosus, are among the most frequently found species in raw milk, hard cooked, long-ripened cheeses. Starting from very low numbers in raw milk, they become dominant in the cheese during ripening, selected by physical and chemical changes produced by cheese making and ripening. Their presence at different stages of cheese making and ripening is crucial in defining product features. For these reasons, the scientific community has been more and more interested in studying these "tiny but mighty microbes" and their implications during cheese making and ripening. The present paper reviews the current literature on the effect of L. casei in cheeses, with particular reference to the case of Parmigiano Reggiano and Grana Padano, two of the most famous PDO (Protected Designation of Origin) Italian cheeses. Recent advances regarding the selection of new wild strains able to persist until the end of ripening and carrying out slow but crucial activities resulting in specific aromatic features, are also presented.

19.
Food Res Int ; 105: 412-422, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29433231

RESUMEN

In this study we explored, for the first time, the lactic acid fermentation of elderberry juice (EJ). A total of 15 strains isolated from dairy and plant matrices, belonging to L. plantarum, L. rhamnosus and L. casei, were used for fermentations. The volatile profile of started and unstarted EJ was characterized by HS-SPME/GC-MS technique after 48h of fermentation and 12days of storage at 4°C. All L. plantarum and L. rhamnosus strains exhibited a good capacity of growth while not all L. casei strains showed the same ability. The aromatic profile of fermented juices was characterized by the presence of 82 volatile compounds pertaining to different classes: alcohols, terpenes and norisoprenoids, organic acids, ketones and esters. Elderberry juice fermented with L. plantarum strains showed an increase of total volatile compounds after 48h while the juices fermented with L. rhamnosus and L. casei exhibited a larger increase after the storage. The highest concentration of total volatile compounds were observed in EJ fermented with L. plantarum 285 isolated from dairy product. Ketones increased in all fermented juices both after fermentation and storage and the most concentrated were acetoin and diacetyl. The organic acids were also affected by lactic acid fermentation and the most abundant acids detected in fermented juices were acetic acid and isovaleric acid. Hexanol, 3-hexen-1-ol (Z) and 2-hexen-1-ol (E) were positively influenced during dairy lactic acid bacteria strains fermentation. The most represented esters were ethyl acetate, methyl isovalerate, isoamyl isovalerate and methyl salicylate, all correlated with fruit notes. Among terpenes and norisoprenoids, ß-damascenone resulted the main representative with its typical note of elderberry. Furthermore, coupling obtained data with multivariate statistical analyses, as Principal Component Analysis (PCA) and Classification Trees (CT), it was possible to relate the characteristic volatile profile of samples with the different species and strains applied in this study.


Asunto(s)
Fermentación , Microbiología de Alimentos/métodos , Jugos de Frutas y Vegetales/microbiología , Ácido Láctico/metabolismo , Lacticaseibacillus casei/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Lactobacillus plantarum/metabolismo , Odorantes/análisis , Sambucus/microbiología , Olfato , Compuestos Orgánicos Volátiles/metabolismo , Jugos de Frutas y Vegetales/análisis , Cromatografía de Gases y Espectrometría de Masas , Lacticaseibacillus casei/crecimiento & desarrollo , Lactobacillus plantarum/crecimiento & desarrollo , Lacticaseibacillus rhamnosus/crecimiento & desarrollo , Sambucus/metabolismo , Microextracción en Fase Sólida
20.
Food Res Int ; 100(Pt 1): 682-690, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28873737

RESUMEN

Lactic acid bacteria are commonly used in dairy industries to acidify milk and to enhance the flavour of the end products thanks to their metabolisms. The formation routes of aroma compounds mainly rely on the specific ability of different species and strains to convert precursors derived from carbohydrate and amino acids catabolism. It is well known that the strains largely involved in the aroma formation of the very appreciated Italian long ripened cheeses belong to the Lactobacillus casei group and origin from raw milk. In this study, a spontaneous fermentation of Parmigiano Reggiano raw milks was carried out to isolate new strains potentially usable as adjunctive aromatic starter. For this reason, specific selection criteria were chosen to isolate strains belonging to L. casei, and L. paracasei species. An integrated approach, by mean of impedance microbiology and SPME GC-MS analysis, was applied to investigate the acidifying performance and the production of volatile compounds of seven strains in UHT whole milk. One of these strains, L. paracasei 4341, appear to be the most interesting one from the technological point of view both for its acidifying and aromatic features. This approach could be employed for selection of the aromatic strains to be potentially used as adjunct starter in dairy sector.


Asunto(s)
Queso/microbiología , Manipulación de Alimentos/métodos , Lacticaseibacillus casei/metabolismo , Microbiología de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida , Temperatura , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA