Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2405029, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838055

RESUMEN

The pursuit of decarbonization involves leveraging waste CO2 for the production of valuable fuels and chemicals (e.g., ethanol, ethylene, and urea) through the electrochemical CO2 reduction reactions (CO2RR). The efficacy of this process heavily depends on electrocatalyst performance, which is generally reliant on high loading of critical minerals. However, the supply of these minerals is susceptible to shortage and disruption, prompting concerns regarding their usage, particularly in electrocatalysis, requiring swift innovations to mitigate the supply risks. The reliance on critical minerals in catalyst fabrication can be reduced by implementing design strategies that improve the available active sites, thereby increasing the mass activity. This review seeks to discuss and analyze potential strategies, challenges, and opportunities for improving catalyst activity in CO2RR with a special attention to addressing the risks associated with critical mineral scarcity. By shedding light onto these aspects of critical mineral-based catalyst systems, this review aims to inspire the development of high-performance catalysts and facilitates the practical application of CO2RR technology, whilst mitigating adverse economic, environmental, and community impacts.

2.
Small Methods ; 8(2): e2300427, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37712209

RESUMEN

Coupling the hydrogen evolution reaction with plastic waste photoreforming provides a synergistic path for simultaneous production of green hydrogen and recycling of post-consumer products, two major enablers for establishment of a circular economy. Graphitic carbon nitride (g-C3 N4 ) is a promising photocatalyst due to its suitable optoelectronic and physicochemical properties, and inexpensive fabrication. Herein, a mechanistic investigation of the structure-activity relationship of g-C3 N4 for poly(ethylene terephthalate) (PET) photoreforming is reported by carefully controlling its fabrication from a subset of earth-abundant precursors, such as dicyandiamide, melamine, urea, and thiourea. These findings reveal that melamine-derived g-C3 N4 with 3 wt.% Pt has significantly higher performance than alternative derivations, achieving a maximum hydrogen evolution rate of 7.33 mmolH2  gcat -1  h-1 , and simultaneously photoconverting PET into valuable organic products including formate, glyoxal, and acetate, with excellent stability for over 30 h of continuous production. This is attributed to the higher crystallinity and associated chemical resistance of melamine-derived g-C3 N4 , playing a major role in stabilization of its morphology and surface properties. These new insights on the role of precursors and structural properties in dictating the photoactivity of g-C3 N4 set the foundation for the further development of photocatalytic processes for combined green hydrogen production and plastic waste reforming.

3.
ACS Nano ; 15(7): 12006-12018, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34192868

RESUMEN

In this study, we propose a top-down approach for the controlled preparation of undercoordinated Ni-Nx (Ni-hG) and Fe-Nx (Fe-hG) catalysts within a holey graphene framework, for the electrochemical CO2 reduction reaction (CO2RR) to synthesis gas (syngas). Through the heat treatment of commercial-grade nitrogen-doped graphene, we prepared a defective holey graphene, which was then used as a platform to incorporate undercoordinated single atoms via carbon defect restoration, confirmed by a range of characterization techniques. We reveal that these Ni-hG and Fe-hG catalysts can be combined in any proportion to produce a desired syngas ratio (1-10) across a wide potential range (-0.6 to -1.1 V vs RHE), required commercially for the Fischer-Tropsch (F-T) synthesis of liquid fuels and chemicals. These findings are in agreement with our density functional theory calculations, which reveal that CO selectivity increases with a reduction in N coordination with Ni, while unsaturated Fe-Nx sites favor the hydrogen evolution reaction (HER). The potential of these catalysts for scale up is further demonstrated by the unchanged selectivity at elevated temperature and stability in a high-throughput gas diffusion electrolyzer, displaying a high-mass-normalized activity of 275 mA mg-1 at a cell voltage of 2.5 V. Our results provide valuable insights into the implementation of a simple top-down approach for fabricating active undercoordinated single atom catalysts for decarbonized syngas generation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...