Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microsyst Nanoeng ; 10: 47, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590818

RESUMEN

Studying the membrane physiology of filamentous fungi is key to understanding their interactions with the environment and crucial for developing new therapeutic strategies for disease-causing pathogens. However, their plasma membrane has been inaccessible for a micron-sized patch-clamp pipette for pA current recordings due to the rigid chitinous cell wall. Here, we report the first femtosecond IR laser nanosurgery of the cell wall of the filamentous fungi, which enabled patch-clamp measurements on protoplasts released from hyphae. A reproducible and highly precise (diffraction-limited, submicron resolution) method for obtaining viable released protoplasts was developed. Protoplast release from the nanosurgery-generated incisions in the cell wall was achieved from different regions of the hyphae. The plasma membrane of the obtained protoplasts formed tight and high-resistance (GΩ) contacts with the recording pipette. The entire nanosurgical procedure followed by the patch-clamp technique could be completed in less than 1 hour. Compared to previous studies using heterologously expressed channels, this technique provides the opportunity to identify new ionic currents and to study the properties of the ion channels in the protoplasts of filamentous fungi in their native environment.

2.
Foods ; 13(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38472870

RESUMEN

The aim of this study was to analyze in detail the phytochemical composition of amaranth (AMJ), red beet (RBJ), and broccoli (BCJ) microgreens and cold-pressed juices and to evaluate the antioxidant and sensory properties of the juices. The results showed the presence of various phenolic compounds in all samples, namely betalains in amaranth and red beet microgreens, while glucosinolates were only detected in broccoli microgreens. Phenolic acids and derivatives dominated in amaranth and broccoli microgreens, while apigenin C-glycosides were most abundant in red beet microgreens. Cold-pressing of microgreens into juice significantly altered the profiles of bioactive compounds. Various isothiocyanates were detected in BCJ, while more phenolic acid aglycones and their derivatives with organic acids (quinic acid and malic acid) were identified in all juices. Microgreen juices exhibited good antioxidant properties, especially ABTS•+ scavenging activity and ferric reducing antioxidant power. Microgreen juices had mild acidity, low sugar content, and good sensory acceptability and quality with the typical flavors of the respective microgreen species. Cold-pressed microgreen juices from AMJ, RBJ, and BCJ represent a rich source of bioactive compounds and can be characterized as novel functional products.

3.
Molecules ; 26(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203164

RESUMEN

Freeze drying was compared with spray drying regarding feasibility to process wild thyme drugs in order to obtain dry formulations at laboratory scale starting from liquid extracts produced by different extraction methods: maceration and heat-, ultrasound-, and microwave-assisted extractions. Higher total powder yield (based on the dry weight prior to extraction) was achieved by freeze than spray drying and lower loss of total polyphenol content (TPC) and total flavonoid content (TFC) due to the drying process. Gelatin as a coating agent (5% w/w) provided better TPC recovery by 70% in case of lyophilization and higher total powder yield in case of spray drying by diminishing material deposition on the wall of the drying chamber. The resulting gelatin-free and gelatin-containing powders carried polyphenols in amount ~190 and 53-75 mg gallic acid equivalents GAE/g of powder, respectively. Microwave-assisted extract formulation was distinguished from the others by a higher content of polyphenols, proteins and sugars, higher bulk density and lower solubility. The type of the drying process mainly affected the position of the gelatin-derived -OH and amide bands in FTIR spectra. Spray-dried formulations compared to freeze-dried expressed higher thermal stability as confirmed by differential scanning calorimetry analysis and a higher diffusion coefficient; the last feature can be associated with the lower specific surface area of irregularly shaped freeze-dried particles (151-223 µm) compared to small microspheres (~8 µm) in spray-dried powder.


Asunto(s)
Gelatina/química , Extractos Vegetales/química , Thymus (Planta)/química , Liofilización , Secado por Pulverización
4.
Nanomaterials (Basel) ; 9(11)2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744091

RESUMEN

Nanotechnology is an emerging field of science, and nanotechnological concepts have been intensively studied for potential applications in the food industry. Nanoparticles (with dimensions ranging from one to several hundred nanometers) have specific characteristics and better functionality, thanks to their size and other physicochemical properties. Polyphenols are recognized as active compounds that have several putative beneficial properties, including antioxidant, antimicrobial, and anticancer activity. However, the use of polyphenols as functional food ingredients faces numerous challenges, such as their poor stability, solubility, and bioavailability. These difficulties could be solved relatively easily by the application of encapsulation. The objective of this review is to present the most recent accomplishments in the usage of polyphenol-loaded nanoparticles in food science. Nanoparticles loaded with polyphenols and their applications as active ingredients for improving physicochemical and functional properties of food, or as components of active packaging materials, were critically reviewed. Potential adverse effects of polyphenol-loaded nanomaterials are also discussed.

5.
J Food Sci Technol ; 54(11): 3411-3420, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29051636

RESUMEN

The goal of this study was to investigate the characteristics of grape skin extract (GSE) spray dried with different carriers: maltodextrin (MD), gum Arabic (GA) and skim milk powder (SMP). The grape skin extract was obtained from winery by-product of red grape variety Prokupac (Vitis vinifera L.). The morphology of the powders, their thermal, chemical and physical properties (water activity, bulk and tapped densities, solubility), as well as release studies in different pH conditions were analyzed. Total anthocyanin content and total phenolic content were determined by spectrophotometric methods. MD and GA-based microparticles were non-porous and spherical, while SMP-based ones were irregularly shaped. The process of spray drying Prokupac GSE using these three carriers produced powders with low water activity (0.24-0.28), good powder characteristics, high yields, and solubility higher than 90%. The obtained dissolution/release profiles indicated prolonged release of anthocyanins and phenolic compounds in different mediums, especially from GSE/GA microparticles. These results have shown that grape skin as the main by-product of wine production could be used as a source of natural colorants and bioactive compounds, and microencapsulation as a promising technique for the protection of these compounds, their stabilization in longer periods and prolonged release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA