Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(7)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37515235

RESUMEN

Despite the availability of effective anti-HIV drug therapy, according to UNAIDS estimates, 1 [...].


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Humanos , Infecciones por VIH/tratamiento farmacológico , Retroviridae/genética , Fármacos Anti-VIH/uso terapéutico , Biología Molecular
3.
Retrovirology ; 13(1): 89, 2016 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-28034301

RESUMEN

BACKGROUND: The nucleocapsid (NC) domain of HIV-1 Gag is responsible for specific recognition and packaging of genomic RNA (gRNA) into new viral particles. This occurs through specific interactions between the Gag NC domain and the Psi packaging signal in gRNA. In addition to this critical function, NC proteins are also nucleic acid (NA) chaperone proteins that facilitate NA rearrangements during reverse transcription. Although the interaction with Psi and chaperone activity of HIV-1 NC have been well characterized in vitro, little is known about simian immunodeficiency virus (SIV) NC. Non-human primates are frequently used as a platform to study retroviral infection in vivo; thus, it is important to understand underlying mechanistic differences between HIV-1 and SIV NC. RESULTS: Here, we characterize SIV NC chaperone activity for the first time. Only modest differences are observed in the ability of SIV NC to facilitate reactions that mimic the minus-strand annealing and transfer steps of reverse transcription relative to HIV-1 NC, with the latter displaying slightly higher strand transfer and annealing rates. Quantitative single molecule DNA stretching studies and dynamic light scattering experiments reveal that these differences are due to significantly increased DNA compaction energy and higher aggregation capability of HIV-1 NC relative to the SIV protein. Using salt-titration binding assays, we find that both proteins are strikingly similar in their ability to specifically interact with HIV-1 Psi RNA. In contrast, they do not demonstrate specific binding to an RNA derived from the putative SIV packaging signal. CONCLUSIONS: Based on these studies, we conclude that (1) HIV-1 NC is a slightly more efficient NA chaperone protein than SIV NC, (2) mechanistic differences between the NA interactions of highly similar retroviral NC proteins are revealed by quantitative single molecule DNA stretching, and (3) SIV NC demonstrates cross-species recognition of the HIV-1 Psi RNA packaging signal.


Asunto(s)
Genoma Viral , VIH-1/química , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , ARN Viral/genética , Virus de la Inmunodeficiencia de los Simios/química , VIH-1/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiología , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/genética , Unión Proteica , Transcripción Reversa , Virus de la Inmunodeficiencia de los Simios/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
4.
Biochemistry ; 55(21): 2944-59, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27163633

RESUMEN

Human APOBEC3B (A3B) is a member of the APOBEC3 (A3) family of cytidine deaminases, which function as DNA mutators and restrict viral pathogens and endogenous retrotransposons. Recently, A3B was identified as a major source of genetic heterogeneity in several human cancers. Here, we determined the solution nuclear magnetic resonance structure of the catalytically active C-terminal domain (CTD) of A3B and performed detailed analyses of its deaminase activity. The core of the structure comprises a central five-stranded ß-sheet with six surrounding helices, common to all A3 proteins. The structural fold is most similar to that of A3A and A3G-CTD, with the most prominent difference being found in loop 1. The catalytic activity of A3B-CTD is ∼15-fold lower than that of A3A, although both exhibit a similar pH dependence. Interestingly, A3B-CTD with an A3A loop 1 substitution had significantly increased deaminase activity, while a single-residue change (H29R) in A3A loop 1 reduced A3A activity to the level seen with A3B-CTD. This establishes that loop 1 plays an important role in A3-catalyzed deamination by precisely positioning the deamination-targeted C into the active site. Overall, our data provide important insights into the determinants of the activities of individual A3 proteins and facilitate understanding of their biological function.


Asunto(s)
Citidina Desaminasa/metabolismo , ADN/química , Antígenos de Histocompatibilidad Menor/química , Antígenos de Histocompatibilidad Menor/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Dominio Catalítico , Citidina Desaminasa/química , ADN/metabolismo , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
5.
Retrovirology ; 12: 3, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25614027

RESUMEN

BACKGROUND: Human APOBEC3H (A3H) belongs to the A3 family of host restriction factors, which are cytidine deaminases that catalyze conversion of deoxycytidine to deoxyuridine in single-stranded DNA. A3 proteins contain either one (A3A, A3C, A3H) or two (A3B, A3D, A3F, A3G) Zn-binding domains. A3H has seven haplotypes (I-VII) that exhibit diverse biological phenotypes and geographical distribution in the human population. Its single Zn-coordinating deaminase domain belongs to a phylogenetic cluster (Z3) that is different from the Z1- and Z2-type domains in other human A3 proteins. A3H HapII, unlike A3A or A3C, has potent activity against HIV-1. Here, we sought to identify the determinants of A3H HapII deaminase and antiviral activities, using site-directed sequence- and structure-guided mutagenesis together with cell-based, biochemical, and HIV-1 infectivity assays. RESULTS: We have constructed a homology model of A3H HapII, which is similar to the known structures of other A3 proteins. The model revealed a large cluster of basic residues (not present in A3A or A3C) that are likely to be involved in nucleic acid binding. Indeed, RNase A pretreatment of 293T cell lysates expressing A3H was shown to be required for detection of deaminase activity, indicating that interaction with cellular RNAs inhibits A3H catalytic function. Similar observations have been made with A3G. Analysis of A3H deaminase substrate specificity demonstrated that a 5' T adjacent to the catalytic C is preferred. Changing the putative nucleic acid binding residues identified by the model resulted in reduction or abrogation of enzymatic activity, while substituting Z3-specific residues in A3H to the corresponding residues in other A3 proteins did not affect enzyme function. As shown for A3G and A3F, some A3H mutants were defective in catalysis, but retained antiviral activity against HIV-1vif (-) virions. Furthermore, endogenous reverse transcription assays demonstrated that the E56A catalytic mutant inhibits HIV-1 DNA synthesis, although not as efficiently as wild type. CONCLUSIONS: The molecular and biological activities of A3H are more similar to those of the double-domain A3 proteins than to those of A3A or A3C. Importantly, A3H appears to use both deaminase-dependent and -independent mechanisms to target reverse transcription and restrict HIV-1 replication.


Asunto(s)
Aminohidrolasas/genética , Aminohidrolasas/metabolismo , VIH-1/inmunología , VIH-1/fisiología , Replicación Viral , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica
6.
Virus Res ; 193: 52-64, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24954787

RESUMEN

The mature HIV-1 nucleocapsid protein (NCp7) is generated by sequential proteolytic cleavage of precursor proteins containing additional C-terminal peptides: NCp15 (NCp7-spacer peptide 2 (SP2)-p6); and NCp9 (NCp7-SP2). Here, we compare the nucleic acid chaperone activities of the three proteins, using reconstituted systems that model the annealing and elongation steps in tRNA(Lys3)-primed (-) strong-stop DNA synthesis and subsequent minus-strand transfer. The maximum levels of annealing are similar for all of the proteins, but there are important differences in their ability to facilitate reverse transcriptase (RT)-catalyzed DNA extension. Thus, at low concentrations, NCp9 has the greatest activity, but with increasing concentrations, DNA synthesis is significantly reduced. This finding reflects NCp9's strong nucleic acid binding affinity (associated with the highly basic SP2 domain) as well as its slow dissociation kinetics, which together limit the ability of RT to traverse the nucleic acid template. NCp15 has the poorest activity of the three proteins due to its acidic p6 domain. Indeed, mutants with alanine substitutions for the acidic residues in p6 have improved chaperone function. Collectively, these data can be correlated with the known biological properties of NCp9 and NCp15 mutant virions and help to explain why mature NC has evolved as the critical cofactor for efficient virus replication and long-term viral fitness.


Asunto(s)
VIH-1/genética , VIH-1/metabolismo , Proteínas de la Nucleocápside/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Transcripción Reversa , Secuencia de Aminoácidos , Secuencia de Bases , Humanos , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Unión Proteica , ARN de Transferencia de Lisina/genética , ARN Viral/química , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Nucleic Acids Res ; 42(2): 1095-110, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24163103

RESUMEN

Human APOBEC3A (A3A) is a single-domain cytidine deaminase that converts deoxycytidine residues to deoxyuridine in single-stranded DNA (ssDNA). It inhibits a wide range of viruses and endogenous retroelements such as LINE-1, but it can also edit genomic DNA, which may play a role in carcinogenesis. Here, we extend our recent findings on the NMR structure of A3A and report structural, biochemical and cell-based mutagenesis studies to further characterize A3A's deaminase and nucleic acid binding activities. We find that A3A binds ssRNA, but the RNA and DNA binding interfaces differ and no deamination of ssRNA is detected. Surprisingly, with only one exception (G105A), alanine substitution mutants with changes in residues affected by specific ssDNA binding retain deaminase activity. Furthermore, A3A binds and deaminates ssDNA in a length-dependent manner. Using catalytically active and inactive A3A mutants, we show that the determinants of A3A deaminase activity and anti-LINE-1 activity are not the same. Finally, we demonstrate A3A's potential to mutate genomic DNA during transient strand separation and show that this process could be counteracted by ssDNA binding proteins. Taken together, our studies provide new insights into the molecular properties of A3A and its role in multiple cellular and antiviral functions.


Asunto(s)
Citidina Desaminasa/química , Proteínas/química , Secuencia de Aminoácidos , Aminoácidos/química , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Desaminación , Proteínas de Escherichia coli/metabolismo , Transcriptasa Inversa del VIH/metabolismo , Humanos , Elementos de Nucleótido Esparcido Largo , Datos de Secuencia Molecular , Mutación , Unión Proteica , Conformación Proteica , Proteínas/genética , Proteínas/metabolismo , ARN/química , ARN/metabolismo , Alineación de Secuencia , Transcripción Genética
8.
Nat Chem ; 6(1): 28-33, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24345943

RESUMEN

The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalysed DNA elongation. Here, we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription.


Asunto(s)
Biopolímeros/química , Citidina Desaminasa/metabolismo , Desaminasa APOBEC-3G , Citidina Desaminasa/química , Desaminación , VIH-1/fisiología , Humanos , ADN Polimerasa Dirigida por ARN/metabolismo , Replicación Viral
9.
Nat Commun ; 4: 1890, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23695684

RESUMEN

Human APOBEC3A is a single-stranded DNA cytidine deaminase that restricts viral pathogens and endogenous retrotransposons, and has a role in the innate immune response. Furthermore, its potential to act as a genomic DNA mutator has implications for a role in carcinogenesis. A deeper understanding of APOBEC3A's deaminase and nucleic acid-binding properties, which is central to its biological activities, has been limited by the lack of structural information. Here we report the nuclear magnetic resonance solution structure of APOBEC3A and show that the critical interface for interaction with single-stranded DNA substrates includes residues extending beyond the catalytic centre. Importantly, by monitoring deaminase activity in real time, we find that A3A displays similar catalytic activity on APOBEC3A-specific TTCA- or A3G-specific CCCA-containing substrates, involving key determinants immediately 5' of the reactive C. Our results afford novel mechanistic insights into APOBEC3A-mediated deamination and provide the structural basis for further molecular studies.


Asunto(s)
Citidina Desaminasa/química , Citidina Desaminasa/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Biocatálisis , ADN/metabolismo , Desaminación , Nucleótidos de Desoxicitosina/metabolismo , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , ARN/metabolismo , Soluciones , Especificidad por Sustrato , Uridina Trifosfato/metabolismo
11.
Virus Res ; 171(2): 346-55, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23149014

RESUMEN

During (-) strong-stop DNA [(-) SSDNA] synthesis, RNase H cleavage of genomic viral RNA generates small 5'-terminal RNA fragments (14-18 nt) that remain annealed to the DNA. Unless these fragments are removed, the minus-strand transfer reaction, required for (-) SSDNA elongation, cannot occur. Here, we describe the mechanism of 5'-terminal RNA removal and the roles of HIV-1 nucleocapsid protein (NC) and RNase H cleavage in this process. Using an NC-dependent system that models minus-strand transfer, we show that the presence of short terminal fragments pre-annealed to (-) SSDNA has no impact on strand transfer, implying efficient fragment removal. Moreover, in reactions with an RNase H(-) reverse transcriptase mutant, NC alone is able to facilitate fragment removal, albeit less efficiently than in the presence of both RNase H activity and NC. Results obtained from novel electrophoretic gel mobility shift and Förster Resonance Energy Transfer assays, which each directly measure RNA fragment release from a duplex in the absence of DNA synthesis, demonstrate for the first time that the architectural integrity of NC's zinc finger (ZF) domains is absolutely required for this reaction. This suggests that NC's helix destabilizing activity (associated with the ZFs) facilitates strand exchange through the displacement of these short terminal RNAs by the longer 3' acceptor RNA, which forms a more stable duplex with (-) SSDNA. Taken together with previously published results, we conclude that NC-mediated fragment removal is linked mechanistically with selection of the correct primer for plus-strand DNA synthesis and tRNA removal step prior to plus-strand transfer. Thus, HIV-1 has evolved a single mechanism for these RNA removal reactions that are critical for successful reverse transcription.


Asunto(s)
ADN Viral/genética , VIH-1/genética , Procesamiento Postranscripcional del ARN , ARN Viral/genética , Transcripción Reversa , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , ADN Viral/química , ADN Viral/metabolismo , Regulación Viral de la Expresión Génica , VIH-1/química , VIH-1/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Dedos de Zinc , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
12.
Virology ; 421(2): 253-65, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22036671

RESUMEN

The HIV-1 capsid protein consists of two independently folded domains connected by a flexible peptide linker (residues 146-150), the function of which remains to be defined. To investigate the role of this region in virus replication, we made alanine or leucine substitutions in each linker residue and two flanking residues. Three classes of mutants were identified: (i) S146A and T148A behave like wild type (WT); (ii) Y145A, I150A, and L151A are noninfectious, assemble unstable cores with aberrant morphology, and synthesize almost no viral DNA; and (iii) P147L and S149A display a poorly infectious, attenuated phenotype. Infectivity of P147L and S149A is rescued specifically by pseudotyping with vesicular stomatitis virus envelope glycoprotein. Moreover, despite having unstable cores, these mutants assemble WT-like structures and synthesize viral DNA, although less efficiently than WT. Collectively, these findings demonstrate that the linker region is essential for proper assembly and stability of cores and efficient replication.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , VIH-1/química , VIH-1/crecimiento & desarrollo , Proteínas del Núcleo Viral/metabolismo , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Sustitución de Aminoácidos , Animales , Aotidae , Proteínas de la Cápside/genética , Células HEK293 , VIH-1/genética , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Estructura Terciaria de Proteína , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
13.
RNA Biol ; 7(6): 754-74, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21160280

RESUMEN

The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.


Asunto(s)
VIH-1/genética , VIH-1/metabolismo , Proteínas de la Nucleocápside/metabolismo , Transcripción Reversa/genética , Citidina Desaminasa/metabolismo , Infecciones por VIH/fisiopatología , Infecciones por VIH/virología , Humanos
14.
Virology ; 405(2): 556-67, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20655566

RESUMEN

The HIV-1 Gag polyprotein precursor has multiple domains including nucleocapsid (NC). Although mature NC and NC embedded in Gag are nucleic acid chaperones (proteins that remodel nucleic acid structure), few studies include detailed analysis of the chaperone activity of partially processed Gag proteins and comparison with NC and Gag. Here we address this issue by using a reconstituted minus-strand transfer system. NC and NC-containing Gag proteins exhibited annealing and duplex destabilizing activities required for strand transfer. Surprisingly, unlike NC, with increasing concentrations, Gag proteins drastically inhibited the DNA elongation step. This result is consistent with "nucleic acid-driven multimerization" of Gag and the reported slow dissociation of Gag from bound nucleic acid, which prevent reverse transcriptase from traversing the template ("roadblock" mechanism). Our findings illustrate one reason why NC (and not Gag) has evolved as a critical cofactor in reverse transcription, a paradigm that might also extend to other retrovirus systems.


Asunto(s)
ADN Viral/metabolismo , Chaperonas Moleculares/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Línea Celular , Polarización de Fluorescencia , VIH-1/genética , VIH-1/metabolismo , VIH-1/fisiología , Humanos , Chaperonas Moleculares/genética , Conformación de Ácido Nucleico , Multimerización de Proteína , Transcripción Reversa , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
15.
Proc Natl Acad Sci U S A ; 106(46): 19539-44, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19887642

RESUMEN

During coevolution with the host, HIV-1 developed the ability to hijack the cellular ubiquitin/proteasome degradation pathway to counteract the antiviral activity of APOBEC3G (A3G), a host cytidine deaminase that can block HIV-1 replication. Abrogation of A3G function involves the HIV-1 Vif protein, which binds A3G and serves as an adapter molecule to recruit A3G to a Cullin5-based E3 ubiquitin ligase complex. Structure-guided mutagenesis of A3G focused on the 14 most surface-exposed Lys residues allowed us to identify four Lys residues (Lys-297, 301, 303, and 334) that are required for Vif-mediated A3G ubiquitination and degradation. Substitution of Arg for these residues confers Vif resistance and restores A3G's antiviral activity in the presence of Vif. In our model, the critical four Lys residues cluster at the C terminus, opposite to the known N-terminal Vif-interaction region in the protein. Thus, spatial constraints imposed by the E3 ligase complex may be an important determinant in Vif-dependent A3G ubiquitination.


Asunto(s)
Citidina Desaminasa/metabolismo , VIH-1/metabolismo , Lisina/metabolismo , Ubiquitinación , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Línea Celular , Citidina Desaminasa/química , Citidina Desaminasa/genética , Infecciones por VIH/metabolismo , Humanos , Lisina/genética , Unión Proteica , Estructura Terciaria de Proteína/genética
16.
Nucleic Acids Res ; 37(6): 1755-66, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19158189

RESUMEN

During minus-strand DNA synthesis, RNase H degrades viral RNA sequences, generating potential plus-strand DNA primers. However, selection of the 3' polypurine tract (PPT) as the exclusive primer is required for formation of viral DNA with the correct 5'-end and for subsequent integration. Here we show a new function for the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NC) in reverse transcription: blocking mispriming by non-PPT RNAs. Three representative 20-nt RNAs from the PPT region were tested for primer extension. Each primer had activity in the absence of NC, but less than the PPT. NC reduced priming by these RNAs to essentially base-line level, whereas PPT priming was unaffected. RNase H cleavage and zinc coordination by NC were required for maximal inhibition of mispriming. Biophysical properties, including thermal stability, helical structure and reverse transcriptase (RT) binding affinity, showed significant differences between PPT and non-PPT duplexes and the trends were generally correlated with the biochemical data. Binding studies in reactions with both NC and RT ruled out a competition binding model to explain NC's observed effects on mispriming efficiency. Taken together, these results demonstrate that NC chaperone activity has a major role in ensuring the fidelity of plus-strand priming.


Asunto(s)
VIH-1/genética , Chaperonas Moleculares/metabolismo , ARN Viral/química , ARN/química , Transcripción Reversa , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Dicroismo Circular , ADN/química , ADN/metabolismo , Cartilla de ADN/química , Transcriptasa Inversa del VIH/metabolismo , Chaperonas Moleculares/química , Desnaturalización de Ácido Nucleico , Purinas/análisis , ARN/metabolismo , ARN Viral/metabolismo , Ribonucleasa H/metabolismo , Zinc/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química
17.
Nucleic Acids Res ; 35(21): 7096-108, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17942420

RESUMEN

APOBEC3G (A3G), a host protein that inhibits HIV-1 reverse transcription and replication in the absence of Vif, displays cytidine deaminase and single-stranded (ss) nucleic acid binding activities. HIV-1 nucleocapsid protein (NC) also binds nucleic acids and has a unique property, nucleic acid chaperone activity, which is crucial for efficient reverse transcription. Here we report the interplay between A3G, NC and reverse transcriptase (RT) and the effect of highly purified A3G on individual reactions that occur during reverse transcription. We find that A3G did not affect the kinetics of NC-mediated annealing reactions, nor did it inhibit RNase H cleavage. In sharp contrast, A3G significantly inhibited all RT-catalyzed DNA elongation reactions with or without NC. In the case of (-) strong-stop DNA synthesis, the inhibition was independent of A3G's catalytic activity. Fluorescence anisotropy and single molecule DNA stretching analyses indicated that NC has a higher nucleic acid binding affinity than A3G, but more importantly, displays faster association/disassociation kinetics. RT binds to ssDNA with a much lower affinity than either NC or A3G. These data support a novel mechanism for deaminase-independent inhibition of reverse transcription that is determined by critical differences in the nucleic acid binding properties of A3G, NC and RT.


Asunto(s)
Citidina Desaminasa/metabolismo , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/genética , Transcripción Reversa , Desaminasa APOBEC-3G , Secuencia de Bases , ADN de Cadena Simple/biosíntesis , ADN de Cadena Simple/química , ADN Viral/biosíntesis , ADN Viral/química , Polarización de Fluorescencia , Transcriptasa Inversa del VIH/metabolismo , Humanos , Datos de Secuencia Molecular , Pinzas Ópticas , ARN/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
18.
Nucleic Acids Res ; 35(12): 3974-87, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17553835

RESUMEN

HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (-) strong-stop DNA followed by reverse transcriptase (RT)-catalyzed DNA extension). In our system, destabilization of a stem-loop structure at the 5' end of the transactivation response element (TAR) in a 70-nt RNA acceptor (RNA 70) appears to be the major nucleation pathway. Using a mutational approach, we show that when the acceptor has a weak local structure, NC has little or no effect. In this case, the efficiencies of both annealing and strand transfer reactions are similar. However, when NC is required to destabilize local structure in acceptor RNA, the efficiency of annealing is significantly higher than that of strand transfer. Consistent with this result, we find that Mg2+ (required for RT activity) inhibits NC-catalyzed annealing. This suggests that Mg2+ competes with NC for binding to the nucleic acid substrates. Collectively, our findings provide new insights into the mechanism of NC-dependent and -independent minus-strand transfer.


Asunto(s)
Proteínas de la Cápside/metabolismo , Productos del Gen gag/metabolismo , Duplicado del Terminal Largo de VIH , VIH-1/genética , Magnesio/farmacología , Chaperonas Moleculares/metabolismo , ARN Viral/química , Transcripción Reversa , Proteínas Virales/metabolismo , Secuencia de Bases , Cationes Bivalentes , ADN Viral/biosíntesis , Magnesio/química , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , ARN Viral/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana
19.
Virology ; 359(1): 105-15, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17055023

RESUMEN

The HIV-1 capsid (CA) protein plays an important role in virus assembly and infectivity. Previously, we showed that Ala substitutions in the N-terminal residues Trp23 and Phe40 cause a severely defective phenotype. In searching for mutations at these positions that result in a non-lethal phenotype, we identified one candidate, W23F. Mutant virions contained aberrant cores, but unlike W23A, also displayed some infectivity in a single-round replication assay and delayed replication kinetics in MT-4 cells. Following long-term passage in MT-4 cells, two second-site mutations were isolated. In particular, the W23F/V26I mutation partially restored the wild-type phenotype, including production of particles with conical cores and wild-type replication kinetics in MT-4 cells. A structural model is proposed to explain the suppressor phenotype. These findings describe a novel occurrence, namely suppression of a mutation in a hydrophobic residue that is critical for maintaining the structural integrity of CA and proper core assembly.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/genética , VIH-1/genética , VIH-1/fisiología , Supresión Genética , Replicación Viral , Línea Celular , VIH-1/ultraestructura , Humanos , Viabilidad Microbiana/genética , Microscopía Electrónica de Transmisión , Modelos Moleculares , Mutación , Fenotipo , Estructura Terciaria de Proteína , ADN Polimerasa Dirigida por ARN/análisis , Virión/ultraestructura
20.
J Virol ; 80(12): 5992-6002, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16731938

RESUMEN

APOBEC3G (APO3G), a cytidine deaminase with two zinc finger domains, inhibits human immunodeficiency virus type 1 replication in the absence of Vif. Here, we provide a comprehensive molecular analysis of the deaminase and nucleic acid binding activities of human APO3G using a pure system containing only one protein component, i.e., highly purified, catalytically active enzyme expressed in a baculovirus system. We demonstrate that APO3G deaminates cytosines in single-stranded DNA (ssDNA) only, whereas it binds efficiently to ssDNA and ssRNA, about half as well to a DNA/RNA hybrid, and poorly to double-stranded DNA and RNA. In addition, the base specificities for deamination and binding of ssDNA are not correlated. The minimum length required for detection of APO3G binding to an ssDNA oligonucleotide in an electrophoretic mobility shift assay is 16 nucleotides. Interestingly, if nucleocapsid protein and APO3G are present in the same reaction, we find that they do not interfere with each other's binding to RNA and a complex containing the RNA and both proteins is formed. Finally, we also identify the functional activities of each zinc finger domain. Thus, although both zinc finger domains have the ability to bind nucleic acids, the first zinc finger contributes more to binding and APO3G encapsidation into virions than finger two. In contrast, deamination is associated exclusively with the second zinc finger. Moreover, zinc finger two is more important than finger one for the antiviral effect, demonstrating a correlation between deaminase and antiviral activities.


Asunto(s)
Nucleósido Desaminasas/farmacología , Proteínas Represoras/farmacología , Desaminasa APOBEC-3G , Antivirales/aislamiento & purificación , Antivirales/metabolismo , Antivirales/farmacología , Baculoviridae/genética , Catálisis , Clonación Molecular , Citidina Desaminasa , ADN de Cadena Simple/metabolismo , Humanos , Nucleósido Desaminasas/aislamiento & purificación , Nucleósido Desaminasas/metabolismo , Oligonucleótidos/metabolismo , Unión Proteica , ARN/metabolismo , Proteínas Represoras/aislamiento & purificación , Proteínas Represoras/metabolismo , Virión/metabolismo , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA