Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(20): 13583-13592, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34597038

RESUMEN

Landfills receive over half of all U.S. municipal solid waste (MSW) and are the third largest source of anthropogenic methane emissions. Life-cycle assessment (LCA) of landfills is complicated by the long duration of waste disposal, gas generation and control, and the time over which the engineered infrastructure must perform. The objective of this study is to develop an LCA model for a representative U.S. MSW landfill that is responsive to landfill size, regulatory thresholds for landfill gas (LFG) collection and control, practices for LFG management (i.e., passive venting, flare, combustion for energy recovery), and four alternative schedules for LFG collection well installation. Material production required for construction and operation contributes 68-75% to toxicity impacts, while LFG emissions contribute 50-99% to global warming, ozone depletion, and smog impacts. The current non-methane organic compound regulatory threshold (34 Mg yr-1) reduces methane emissions by <7% relative to the former threshold (50 Mg yr-1). Requiring landfills to continue collecting LFG until the flow rate is <10 m3 min-1 reduces emissions by 20-52%, depending on the waste decay rate. In general, for landfills already required to collect gas, collecting gas longer is more important than collecting gas earlier to reduce methane emissions.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Metano , Instalaciones de Eliminación de Residuos
2.
Environ Sci Technol ; 55(8): 5475-5484, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33687209

RESUMEN

Life-cycle assessments (LCAs) of municipal solid waste management (MSWM) systems are time- and data-intensive. Reducing the data requirements for inventory and impact assessments will facilitate the wider use of LCAs during early system planning and design. Therefore, the objective of this study is to develop a systematic framework for streamlining LCAs by identifying the most critical impacts, life-cycle inventory emissions, and inputs based on their contributions to the total impacts and their effect on the rankings of 18 alternative MSWM scenarios. The scenarios are composed of six treatment processes: landfills, waste-to-energy combustion, single-stream recycling, mixed waste recycling, anaerobic digestion, and composting. The full LCA uses 1752 flows of resources and emissions, 10 impact categories, 3 normalization references, and 7 weighting schemes, and these were reduced using the streamlined LCA approach proposed in this study. Human health cancer, ecotoxicity, eutrophication, and fossil fuel depletion contribute 75-83% to the total impacts across all scenarios. It was found that 3.3% of the inventory flows contribute ≥95% of the overall environmental impact. The highest-ranked strategies are consistent between the streamlined and full LCAs. The results provide guidance on which impacts, flows, and inputs to prioritize during early strategy design.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Humanos , Reciclaje , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos
3.
Environ Sci Technol ; 55(1): 73-81, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33300346

RESUMEN

There is increasing interest in diverting the organic fraction of municipal solid waste from landfills to biological treatment processes that result in compost. Due to variations in compost quality and available markets, it is not always possible for compost to be beneficially used on soil. In such cases, compost may be used as alternative daily cover (ADC) in landfills. The objective of this study is to compare the environmental impacts of using compost as a soil amendment, accounting for its beneficial substitutions for fertilizer and peat, to its use as ADC. Monte Carlo simulation and parametric sensitivity analyses were performed to evaluate the effects of uncertainty in input values on the environmental performance. The ADC scenario outperforms the soil amendment scenario in terms of global warming potential, acidification, and eutrophication in ∼63, ∼77, and ∼100% of simulations, respectively, while the soil amendment scenario is better in terms of cumulative energy demand and abiotic resource depletion potential ∼94 and ∼96% of the time, respectively. Therefore, we recommend that using compost as ADC be considered, especially when site-specific factors such as feedstock contamination or a lack of markets make it difficult to find appropriate applications for compost as a soil amendment.


Asunto(s)
Compostaje , Eliminación de Residuos , Fertilizantes , Calentamiento Global , Suelo , Residuos Sólidos
4.
Environ Sci Technol ; 54(3): 1304-1313, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31795636

RESUMEN

Landfills are a major contributor of anthropogenic CH4 emissions. Since the greenhouse gas (GHG) emissions associated with landfilling waste can occur over decades to centuries, the standard static approach to estimating global warming impacts may not accurately represent the global warming impacts of landfills. The objective of this study is to assess the implications of using 100 yr and 20 yr static and dynamic global warming potential (GWP) approaches to estimate the global warming impacts from municipal solid waste landfills. A life-cycle model was developed to estimate GHG emissions for three gas treatment cases (passive venting, flare, CH4 conversion to electricity) and four decay rates. For the 100 yr GWP, other model uncertainties (e.g., static GWP values, decay rate, moisture content, or gas collection efficiency) generally had a larger effect on the estimated global warming impact than the choice of static versus dynamic GWP methods. This shows that when comparing single-point GWP values, the choice of static versus dynamic is relatively unimportant for most landfills. While dynamic GWPs consider temporal variance and provide useful estimates for the warming over a set time horizon, for most comparative analyses, static values provide reasonable bounds for the actual 100 yr warming impact.


Asunto(s)
Calentamiento Global , Gases de Efecto Invernadero , Dióxido de Carbono , Efecto Invernadero , Metano , Residuos Sólidos , Instalaciones de Eliminación de Residuos
5.
Environ Sci Technol ; 53(11): 6123-6132, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31075195

RESUMEN

Waste managers struggle to comply with the European legislation that regulates the handling of organic waste. A waste management system that aims at recovering nutrients from the municipal organic waste generated in the Spanish region of Cantabria was modeled by combining material flow analysis, life cycle assessment, and life cycle costing. The model was optimized to find system configurations that minimize the total annual cost (TAC) and the global warming impacts (GW) and maximize the circularity indicators of nitrogen and phosphorus (CIN and CIP). The developed superstructure is composed of waste management unit processes and unit processes related to the land application of the recovered products (compost, digestate, (NH4)2SO4, and NH4MgPO4·6H2O) and industrial fertilizers to grow corn. The results of the optimization indicate that increasing CIN and minimizing GW raises the TAC, because of the investment in new technologies, although high CIP values can be achieved at low TACs. The economic margin that enables the organic fertilizers to compete in the market with industrial fertilizers was estimated. Cooperation between waste managers, the farmers that purchase the recovered products, and the policy-makers that set the waste management taxes can minimize the costs that hinder the transition toward a circular economy.


Asunto(s)
Nutrientes , Administración de Residuos , Fertilizantes , Nitrógeno , Fósforo
6.
Environ Sci Technol ; 53(4): 1766-1775, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30633859

RESUMEN

Solid waste management (SWM) is a key function of local government and is critical to protecting human health and the environment. Development of effective SWM strategies should consider comprehensive SWM process choices and policy implications on system-level cost and environmental performance. This analysis evaluated cost and select environmental implications of SWM policies for Wake County, North Carolina using a life-cycle approach. A county-specific data set and scenarios were developed to evaluate alternatives for residential municipal SWM, which included combinations of a mixed waste material recovery facility (MRF), anaerobic digestion, and waste-to-energy combustion in addition to existing SWM infrastructure (composting, landfilling, single stream recycling). Multiple landfill diversion and budget levels were considered for each scenario. At maximum diversion, the greenhouse gas (GHG) mitigation costs ranged from 30 to 900 $/MTCO2e; the lower values were when a mixed waste MRF was used, and the higher values when anaerobic digestion was used. Utilization of the mixed waste MRF was sensitive to the efficiency of material separation and operating cost. Maintaining the current separate collection scheme limited the potential for cost and GHG reductions. Municipalities seeking to cost-effectively increase landfill diversion while reducing GHGs should consider waste-to-energy, mixed waste separation, and changes to collection.


Asunto(s)
Gases de Efecto Invernadero , Eliminación de Residuos , Administración de Residuos , Ciudades , Efecto Invernadero , Humanos , North Carolina , Residuos Sólidos
7.
J Vis Exp ; (124)2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28654054

RESUMEN

The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software.


Asunto(s)
Reactores Biológicos/microbiología , Luz , Microalgas/crecimiento & desarrollo , Modelos Biológicos , Fotosíntesis , Temperatura , Biocombustibles , Concentración de Iones de Hidrógeno , Cinética
8.
Environ Sci Technol ; 51(6): 3119-3127, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28263562

RESUMEN

The development of sustainable solid waste management (SWM) systems requires consideration of both economic and environmental impacts. Societal life-cycle costing (S-LCC) provides a quantitative framework to estimate both economic and environmental impacts, by including "budget costs" and "externality costs". Budget costs include market goods and services (economic impact), whereas externality costs include effects outside the economic system (e.g., environmental impact). This study demonstrates the applicability of S-LCC to SWM life-cycle optimization through a case study based on an average suburban U.S. county of 500 000 people generating 320 000 Mg of waste annually. Estimated externality costs are based on emissions of CO2, CH4, N2O, PM2.5, PM10, NOx, SO2, VOC, CO, NH3, Hg, Pb, Cd, Cr (VI), Ni, As, and dioxins. The results indicate that incorporating S-LCC into optimized SWM strategy development encourages the use of a mixed waste material recovery facility with residues going to incineration, and separated organics to anaerobic digestion. Results are sensitive to waste composition, energy mix and recycling rates. Most of the externality costs stem from SO2, NOx, PM2.5, CH4, fossil CO2, and NH3 emissions. S-LCC proved to be a valuable tool for policy analysis, but additional data on key externality costs such as organic compounds emissions to water would improve future analyses.


Asunto(s)
Residuos Sólidos , Administración de Residuos , Costos y Análisis de Costo , Incineración , Reciclaje , Eliminación de Residuos
9.
Environ Sci Technol ; 51(4): 2197-2205, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28103667

RESUMEN

Landfills are the final stage in the life cycle of many products containing per- and polyfluoroalkyl substances (PFASs) and their presence has been reported in landfill leachate. The concentrations of 70 PFASs in 95 samples of leachate were measured in a survey of U.S. landfills of varying climates and waste ages. National release of PFASs was estimated by coupling measured concentrations for the 19 PFASs where more than 50% of samples had quantifiable concentrations, with climate-specific estimates of annual leachate volumes. For 2013, the total volume of leachate generated in the U.S. was estimated to be 61.1 million m3, with 79% of this volume coming from landfills in wet climates (>75 cm/yr precipitation) that contain 47% of U.S. solid waste. The mass of measured PFASs from U.S. landfill leachate to wastewater treatment plants was estimated to be between 563 and 638 kg for 2013. In the majority of landfill leachate samples, 5:3 fluorotelomer carboxylic acid (FTCA) was dominant and variations in concentrations with waste age affected total estimated mass. There were six PFASs that demonstrated significantly higher concentrations in leachate from younger waste compared to older waste and six PFAS demonstrated significant variation with climate.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Eliminación de Residuos , Residuos Sólidos , Instalaciones de Eliminación de Residuos , Aguas Residuales
10.
Environ Sci Technol ; 50(16): 8444-52, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27387287

RESUMEN

New regulations and targets limiting the disposal of food waste have been recently enacted in numerous jurisdictions. This analysis evaluated selected environmental implications of food waste management policies using life-cycle assessment. Scenarios were developed to evaluate management alternatives applicable to the waste discarded at facilities where food waste is a large component of the waste (e.g., restaurants, grocery stores, and food processors). Options considered include anaerobic digestion (AD), aerobic composting, waste-to-energy combustion (WTE), and landfilling, and multiple performance levels were considered for each option. The global warming impact ranged from approximately -350 to -45 kg CO2e Mg(-1) of waste for scenarios using AD, -190 to 62 kg CO2e Mg(-1) for those using composting, -350 to -28 kg CO2e Mg(-1) when all waste was managed by WTE, and -260 to 260 kg CO2e Mg(-1) when all waste was landfilled. Landfill diversion was found to reduce emissions, and diverting food waste from WTE generally increased emissions. The analysis further found that when a 20 year GWP was used instead of a 100 year GWP, every scenario including WTE was preferable to every scenario including landfill. Jurisdictions seeking to enact food waste disposal regulations should consider regional factors and material properties before duplicating existing statutes.


Asunto(s)
Alimentos , Eliminación de Residuos , Administración de Residuos/métodos , Suelo , Estados Unidos , Instalaciones de Eliminación de Residuos
11.
Waste Manag ; 35: 307-17, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25301544

RESUMEN

Insights derived from life-cycle assessment of solid waste management strategies depend critically on assumptions, data, and modeling at the unit process level. Based on new primary data, a process model was developed to estimate the cost and energy use associated with material recovery facilities (MRFs), which are responsible for sorting recyclables into saleable streams and as such represent a key piece of recycling infrastructure. The model includes four modules, each with a different process flow, for separation of single-stream, dual-stream, pre-sorted recyclables, and mixed-waste. Each MRF type has a distinct combination of equipment and default input waste composition. Model results for total amortized costs from each MRF type ranged from $19.8 to $24.9 per Mg (1Mg=1 metric ton) of waste input. Electricity use ranged from 4.7 to 7.8kWh per Mg of waste input. In a single-stream MRF, equipment required for glass separation consumes 28% of total facility electricity consumption, while all other pieces of material recovery equipment consume less than 10% of total electricity. The dual-stream and mixed-waste MRFs have similar electricity consumption to a single-stream MRF. Glass separation contributes a much larger fraction of electricity consumption in a pre-sorted MRF, due to lower overall facility electricity consumption. Parametric analysis revealed that reducing separation efficiency for each piece of equipment by 25% altered total facility electricity consumption by less than 4% in each case. When model results were compared with actual data for an existing single-stream MRF, the model estimated the facility's electricity consumption within 2%. The results from this study can be integrated into LCAs of solid waste management with system boundaries that extend from the curb through final disposal.


Asunto(s)
Modelos Teóricos , Eliminación de Residuos/economía , Eliminación de Residuos/métodos , Costos y Análisis de Costo , Electricidad , Modelos Económicos , Reciclaje/economía , Residuos Sólidos
12.
Environ Sci Technol ; 48(7): 3625-31, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24601652

RESUMEN

Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.


Asunto(s)
Ciudades , Residuos Sólidos/análisis , Administración de Residuos/métodos , Contaminantes Atmosféricos/análisis , Costos y Análisis de Costo , Electricidad , Gases/análisis , Efecto Invernadero , Humanos , Modelos Teóricos , Residuos Sólidos/economía , Factores de Tiempo , Incertidumbre , Estados Unidos , Administración de Residuos/economía
13.
Environ Sci Technol ; 45(17): 7438-44, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21838255

RESUMEN

Commercial food waste represents a relatively available high-quality feedstock for landfill diversion to biological treatment. A life-cycle assessment was performed for commercial food waste processed through aerobic composting systems of varying complexity, anaerobic digestion, and landfills with and without gas collection and energy recovery, as well as a bioreactor landfill. The functional unit was 1000 kg of food waste plus 550 kg of branches that are used as a bulking agent. For each alternative, global warming potential, NO(x) and SO(2) emissions, and total net energy use were determined. Anaerobic digestion was the most environmentally beneficial treatment option, leading to -395 kg net CO(2)e per functional unit. This result was driven by avoided electricity generation and soil carbon storage from use of the resulting soil amendment. The composting alternatives led to between -148 and -64 kg net CO(2)e, whereas the landfill alternatives led to the emission of -240 to 1100 kg CO(2)e. A traditional landfill with energy recovery was predicted to have lower emissions than any of the composting alternatives when a fertilizer offset was used. There is variation in the results based on uncertainty in the inputs, and the relative rankings of the alternatives are dependent on the soil amendment offset that is used. The use of compost to offset peat has greater emission offsets than the value of compost as a fertilizer.


Asunto(s)
Alimentos , Eliminación de Residuos/métodos , Administración de Residuos/métodos , Agricultura/métodos , Contaminantes Atmosféricos/análisis , Reactores Biológicos , Dióxido de Carbono/análisis , Ambiente , Calentamiento Global , Humanos , Metano/análisis , Modelos Teóricos , Óxido Nítrico/química , Eliminación de Residuos/instrumentación , Suelo/química , Dióxido de Azufre/química
14.
Environ Sci Technol ; 45(13): 5470-6, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21615182

RESUMEN

There is increasing interest in the use of biodegradable materials because they are believed to be "greener". In a landfill, these materials degrade anaerobically to form methane and carbon dioxide. The fraction of the methane that is collected can be utilized as an energy source and the fraction of the biogenic carbon that does not decompose is stored in the landfill. A landfill life-cycle model was developed to represent the behavior of MSW components and new materials disposed in a landfill representative of the U.S. average with respect to gas collection and utilization over a range of environmental conditions (i.e., arid, moderate wet, and bioreactor). The behavior of materials that biodegrade at relatively fast (food waste), medium (biodegradable polymer) and slow (newsprint and office paper) rates was studied. Poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) (PHBO) was selected as illustrative for an emerging biodegradable polymer. Global warming potentials (GWP) of 26, 720, -1000, 990, and 1300 kg CO(2)e wet Mg(-1) were estimated for MSW, food waste, newsprint, office paper, and PHBO, respectively in a national average landfill. In a state-of-the-art landfill with gas collection and electricity generation, GWP's of -250, 330, -1400, -96, and -420 kg CO(2)e wet Mg(-1) were estimated for MSW, food waste, newsprint, office paper and PHBO, respectively. Additional simulations showed that for a hypothetical material, a slower biodegradation rate and a lower extent of biodegradation improve the environmental performance of a material in a landfill representative of national average conditions.


Asunto(s)
Biodegradación Ambiental , Efecto Invernadero , Modelos Teóricos , Eliminación de Residuos/normas , Dióxido de Carbono/análisis , Simulación por Computador , Residuos de Alimentos , Metano/análisis , Papel , Poliésteres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...