Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3669, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760926

RESUMEN

Very long-chain acyl-CoA dehydrogenase (VLCAD) is an inner mitochondrial membrane enzyme that catalyzes the first and rate-limiting step of long-chain fatty acid oxidation. Point mutations in human VLCAD can produce an inborn error of metabolism called VLCAD deficiency that can lead to severe pathophysiologic consequences, including cardiomyopathy, hypoglycemia, and rhabdomyolysis. Discrete mutations in a structurally-uncharacterized C-terminal domain region of VLCAD cause enzymatic deficiency by an incompletely defined mechanism. Here, we conducted a structure-function study, incorporating X-ray crystallography, hydrogen-deuterium exchange mass spectrometry, computational modeling, and biochemical analyses, to characterize a specific membrane interaction defect of full-length, human VLCAD bearing the clinically-observed mutations, A450P or L462P. By disrupting a predicted α-helical hairpin, these mutations either partially or completely impair direct interaction with the membrane itself. Thus, our data support a structural basis for VLCAD deficiency in patients with discrete mutations in an α-helical membrane-binding motif, resulting in pathologic enzyme mislocalization.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Enfermedades Mitocondriales , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Humanos , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Musculares
2.
Nat Commun ; 12(1): 4932, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389733

RESUMEN

BAX is a pro-apoptotic member of the BCL-2 family, which regulates the balance between cellular life and death. During homeostasis, BAX predominantly resides in the cytosol as a latent monomer but, in response to stress, transforms into an oligomeric protein that permeabilizes the mitochondria, leading to apoptosis. Because renegade BAX activation poses a grave risk to the cell, the architecture of BAX must ensure monomeric stability yet enable conformational change upon stress signaling. The specific structural features that afford both stability and dynamic flexibility remain ill-defined and represent a critical control point of BAX regulation. We identify a nexus of interactions involving four residues of the BAX core α5 helix that are individually essential to maintaining the structure and latency of monomeric BAX and are collectively required for dimeric assembly. The dual yet distinct roles of these residues reveals the intricacy of BAX conformational regulation and opportunities for therapeutic modulation.


Asunto(s)
Aminoácidos/genética , Apoptosis/genética , Mutación , Transducción de Señal/genética , Proteína X Asociada a bcl-2/genética , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Sitios de Unión/genética , Células Cultivadas , Citosol/metabolismo , Humanos , Ratones Noqueados , Mitocondrias/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA