Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Clin Exp Med ; 32(10): 1179-1191, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36920267

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and represents a high-grade neoplasm of skeletal myoblast-like cells. About 40% of all registered soft tissue tumors are RMSs. This paper describes our current understanding of the RMS subtypes (alveolar (ARMS), embryonic (ERMS), pleomorphic (PRMS), and spindle cell/sclerosing (s/scRMS)), diagnostic methods, molecular bases, and characteristics. We also present the currently used treatment methods and the potential use of natural substances in the treatment of this type of cancer. Natural cytotoxic substances are compounds that have been the subject of numerous studies and discussions in recent years. Since anti-cancer therapies are often limited by a low therapeutic index and cancer resistance to pharmacotherapy, it is very important to search for new, effective compounds. Additionally, compounds of a natural origin are usually readily available and have a reduced cytotoxicity. Thus, the undiscovered potential of natural anti-cancer compounds makes this field of research a very important area. The introduction of model species into research examining the use of natural cytostatic therapies for RMS will allow for further assessment of the effects of these compounds on cancerous and healthy tissues.


Asunto(s)
Citostáticos , Rabdomiosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Niño , Humanos , Citostáticos/farmacología , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma/patología , Sarcoma/patología , Neoplasias de los Tejidos Blandos/patología
2.
Sci Rep ; 13(1): 351, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611083

RESUMEN

Nanosecond pulsed electric fields (nsPEF) have been shown to exert anticancer effects; however, little is known about the mechanisms triggered in cancer cells by nanosecond-length pulses, especially when low, sub-permeabilization voltage is used. In this study, three human pancreatic cancer cell lines were treated with nsPEF and molecular changes at the cellular level were analyzed. Further, we assessed the efficacy of paclitaxel chemotherapy following nsPEF treatment and correlated that with the changes in the expression of multi-drug resistance (MDR) proteins. Finally, we examined the influence of nsPEF on the adhesive properties of cancer cells as well as the formation and growth of pancreatic cancer spheroids. Cell line response differed with the application of a 200 ns, 100 pulses, 8 kV/cm, 10 kHz PEF treatment. PEF treatment led to (1) the release of microvesicles (MV) in EPP85-181RDB cells, (2) electropermeabilization in EPP85-181RNOV cells and (3) cell shrinkage in EPP85-181P cells. The release of MV's in EPP85-181RDB cells reduced the membrane content of P-gp and LRP, leading to a transient increase in vulnerability of the cells towards paclitaxel. In all cell lines we observed an initial reduction in size of the cancer spheroids after the nsPEF treatment. Cell line EPP85-181RNOV exhibited a permanent reduction in the spheroid size after nsPEF. We propose a mechanism in which the surface tension of the membrane, regulated by the organization of actin fibers, modulates the response of cancer cells towards nsPEF. When a membrane's surface tension remains low, we observed some cells form protrusions and release MVs containing MDR proteins. In contrast, when cell surface tension remains high, the cell membrane is being electroporated. The latter effect may be responsible for the reduced tumor growth following nsPEF treatment.


Asunto(s)
Resistencia a Múltiples Medicamentos , Neoplasias Pancreáticas , Humanos , Línea Celular , Membrana Celular/metabolismo , Electroporación , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
3.
Artículo en Inglés | MEDLINE | ID: mdl-34822977

RESUMEN

Lipid droplets (LDs) are common organelles observed in Eucaryota. They are multifunctional organelles (involved in lipid storage, metabolism, and trafficking) that originate from endoplasmic reticulum (ER). LDs consist of a neutral lipid core, made up of diacyl- and triacylglycerols (DAGs and TAGs) and cholesterol esters (CEs), surrounded by a phospholipid monolayer and proteins, which are necessary for their structure and dynamics. Here, we report the protein and lipid composition as well as characterization and dynamics of grass snake (Natrix natrix) skeletal muscle LDs at different developmental stages. In the present study, we used detailed morphometric, LC-MS, quantitative lipidomic analyses of LDs isolated from the skeletal muscles of the snake embryos, immunofluorescence, and TEM. Our study also provides a valuable insight concerning the LDs' multifunctionality and ability to interact with a variety of organelles. These LD features are reflected in their proteome composition, which contains scaffold proteins, metabolic enzymes signalling polypeptides, proteins necessary for the formation of docking sites, and many others. We also provide insights into the biogenesis and growth of muscle LDs goes beyond the conventional mechanism based on the synthesis and incorporation of TAGs and LD fusion. We assume that the formation and functioning of grass snake muscle LDs are based on additional mechanisms that have not yet been identified, which could be related to the unique features of reptiles that are manifested in the after-hatching period of life, such as a reptile-specific strategy for energy saving during hibernation.


Asunto(s)
Gotas Lipídicas
4.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073503

RESUMEN

Drug-induced myopathies are classified as acquired myopathies caused by exogenous factors. These pathological conditions develop in patients without muscle disease and are triggered by a variety of medicaments, including lipid-lowering drugs (LLDs) such as statins, fibrates, and ezetimibe. Here we summarise the current knowledge gained via studies conducted using various models, such as cell lines and mammalian models, and compare them with the results obtained in zebrafish (Danio rerio) studies. Zebrafish have proven to be an excellent research tool for studying dyslipidaemias as a model of these pathological conditions. This system enables in-vivo characterization of drug and gene candidates to further the understanding of disease aetiology and develop new therapeutic strategies. Our review also considers important environmental issues arising from the indiscriminate use of LLDs worldwide. The widespread use and importance of drugs such as statins and fibrates justify the need for the meticulous study of their mechanism of action and the side effects they cause.


Asunto(s)
Ácidos Fíbricos/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Enfermedades Musculares , Pez Cebra/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Fíbricos/farmacología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología
5.
Postepy Biochem ; 67(4): 410-419, 2021 12 31.
Artículo en Polaco | MEDLINE | ID: mdl-35107963

RESUMEN

Skeletal muscles are a highly specialized animal tissue whose basic function is the contraction, which leads into animal movement. One of the types of skeletal muscles are trunk (myotomal) muscles, which in vertebrates belong to the oldest phylogenetically group of muscles. The comparative studies of myotomal myogenesis have shown that these muscles, despite a similar structure plan and under the control of the same genetic factors, may differentiate differently in individual species of vertebrates (both in model and non-model species). The understanding of the skeletal muscle development mechanisms seem to be a precondition for understanding the muscle tissue diseases observed in humans. This paper summarizes the current knowledge on the skeletal muscles differentiation in animals, pathological states of muscles caused by mutations in the genes of structural and metabolic proteins.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Animales , Diferenciación Celular , Humanos , Enfermedades Musculares/genética
6.
Semin Cell Dev Biol ; 104: 3-13, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31759871

RESUMEN

In our review we have completed current knowledge on myotomal myogenesis in model and non-model vertebrate species (fishes, amphibians, reptiles, birds and mammals) at morphological and molecular levels. Data obtained from these studies reveal distinct similarities and differences between amniote and anamniote species. Based on the available data, we decided to present evolutionary implications in vertebrate trunk muscle development. Despite the fact that in all vertebrates muscle fibres are multinucleated, the pathways leading to them vary between vertebrate taxa. In fishes during early myogenesis myoblasts differentiate into multinucleated lamellae or multinucleate myotubes. In amphibians, myoblasts fuse to form multinucleated myotubes or, bypassing fusion, directly differentiate into mononucleated myotubes. Furthermore, mononucleated myotubes were also observed during primary myogenesis in amniotes. The mononucleated state of myogenic cells could be considered as an old phylogenetic, plesiomorphic feature, whereas direct multinuclearity of myotubes has a synapomorphic character. On the other hand, the explanation of this phenomenon could also be linked to the environmental conditions in which animals develop. The similarities observed in vertebrate myogenesis might result from a conservative myogenic programme governed by the Pax3/Pax7 and myogenic regulatory factor (MRF) network, whereas differences in anamniotes and amniotes are established by spatiotemporal pattern expression of MRFs during muscle differentiation and/or environmental conditions.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/citología , Vertebrados , Animales , Músculo Esquelético/metabolismo
7.
Dev Genes Evol ; 229(5-6): 147-159, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31214772

RESUMEN

Our studies conducted on reptilian limb muscle development revealed, for the first time, early forelimb muscle differentiation at the morphological and molecular level. Sand lizard skeletal muscle differentiation in the early forelimb bud was investigated by light, confocal, and transmission electron microscopy as well as western blot. The early forelimb bud, filled with mesenchymal cells, is surrounded by monolayer epithelium cells. The immunocytochemical analysis revealed the presence of Pax3- and Lbx-positive cells in the vicinity of the ventro-lateral lip (VLL) of the dermomyotome, suggesting that VLL is the source of limb muscle progenitor cells. Furthermore, Pax3- and Lbx-positive cells were observed in the dorsal and ventral myogenic pools of the forelimb bud. Skeletal muscle development in the early limb bud is asynchronous, which is manifested by the presence of myogenic cells in different stages of differentiation: multinucleated myotubes with well-developed contractile apparatus, myoblasts, and mitotically active premyoblasts. The western blot analysis revealed the presence of MyoD and Myf5 proteins in all investigated developmental stages. The MyoD western blot analysis showed two bands corresponding to monomeric (mMyoD) and dimeric (dMyoD) fractions. Two separate bands were also detected in the case of Myf5. The observed bands were related to non-phosphorylated (Myf5) and phosphorylated (pMyf5) fractions of Myf5. Our investigations on sand lizard forelimb myogenesis showed that the pattern of muscle differentiation in the early forelimb bud shares many features with rodents and chicks.


Asunto(s)
Lagartos/embriología , Desarrollo de Músculos , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Miembro Anterior/embriología , Esbozos de los Miembros/citología , Esbozos de los Miembros/crecimiento & desarrollo , Lagartos/genética , Microscopía Confocal , Proteínas Musculares/análisis , Proteínas Musculares/genética , Músculo Esquelético/citología , Músculo Esquelético/embriología
8.
Protoplasma ; 254(4): 1507-1516, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27834030

RESUMEN

In the grass snake (Natrix natrix), the newly developed somites form vesicles that are located on both sides of the neural tube. The walls of the vesicles are composed of tightly connected epithelial cells surrounding the cavity (the somitocoel). Also, in the newly formed somites, the Pax3 protein can be observed in the somite wall cells. Subsequently, the somite splits into three compartments: the sclerotome, dermomyotome (with the dorsomedial [DM] and the ventrolateral [VL] lips) and the myotome. At this stage, the Pax3 protein is detected in both the DM and VL lips of the dermomyotome and in the mononucleated cells of the myotome, whereas the Pax7 protein is observed in the medial part of the dermomyotome and in some of the mononucleated cells of the myotome. The mononucleated cells then become elongated and form myotubes. As myogenesis proceeds, the myotome is filled with multinucleated myotubes accompanied by mononucleated, Pax7-positive cells (satellite cells) that are involved in muscle growth. The Pax3-positive progenitor muscle cells are no longer observed. Moreover, we have observed unique features in the differentiation of the muscles in these snakes. Specifically, our studies have revealed the presence of two classes of muscles in the myotomes. The first class is characterised by fast muscle fibres, with myofibrils equally distributed throughout the sarcoplasm. In the second class, composed of slow muscle fibres, the sarcoplasm is filled with lipid droplets. We assume that their storage could play a crucial role during hibernation in the adult snakes. We suggest that the model of myotomal myogenesis in reptiles, birds and mammals shows the same morphological and molecular character. We therefore believe that the grass snake, in spite of the unique features of its myogenesis, fits into the amniotes-specific model of trunk muscle development.


Asunto(s)
Colubridae/embriología , Desarrollo de Músculos , Músculo Esquelético/embriología , Animales , Diferenciación Celular , Colubridae/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/ultraestructura , Femenino , Modelos Biológicos , Proteínas Musculares/metabolismo , Músculo Esquelético/ultraestructura , Proteínas de Reptiles/metabolismo , Somitos/embriología
9.
Protoplasma ; 253(2): 625-33, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26025263

RESUMEN

During early stages of myotomal myogenesis, the myotome of Egyptian cobra (Naja haje) is composed of homogenous populations of mononucleated primary myotubes. At later developmental phase, primary myotubes are accompanied by closely adhering mononucleated cells. Based on localization and morphology, we assume that mononucleated cells share features with satellite cells involved in muscle growth. An indirect morphological evidence of the fusion of mononucleated cells with myotubes is the presence of numerous vesicles in the subsarcolemmal region of myotubes adjacent to mononucleated cell. As differentiation proceeded, secondary muscle fibres appeared with considerably smaller diameter as compared to primary muscle fibre. Studies on N. haje myotomal myogenesis revealed some unique features of muscle differentiation. TEM analysis showed in the N. haje myotomes two classes of muscle fibres. The first class was characterized by typical for fast muscle fibres regular distribution of myofibrils which fill the whole volume of muscle fibre sarcoplasm. White muscle fibres in studied species were a prominent group of muscles in the myotome. The second class showed tightly paced myofibrils surrounding the centrally located nucleus accompanied by numerous vesicles of different diameter. The sarcoplasm of these cells was characterized by numerous lipid droplets. Based on morphological features, we believe that muscle capable of lipid storage belong to slow muscle fibres and the presence of lipid droplets in the sarcoplasm of these muscles during myogenesis might be a crucial adaptive mechanisms for subsequent hibernation in adults. This phenomenon was, for the first time, described in studies on N. haje myogenesis.


Asunto(s)
Elapidae/crecimiento & desarrollo , Desarrollo de Músculos , Fibras Musculares Esqueléticas/fisiología , Animales , Diferenciación Celular , Femenino , Fibras Musculares Esqueléticas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...