Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39436694

RESUMEN

Following a meal, glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), the two major incretins promoting insulin release, are secreted from specialized enteroendocrine cells (L- and K-cells, respectively). Although GIP is the dominant incretin in humans, the detailed molecular mechanisms governing its release remain to be explored. GIP secretion is regulated by the activity of G protein-coupled receptors (GPCRs) expressed by K-cells. GPCRs couple to one or more specific classes of heterotrimeric G proteins. In the present study, we focused on the potential metabolic roles of K-cell Gs. First, we generated a mouse model that allowed us to selectively stimulate K-cell Gs signaling. Second, we generated a mouse strain harboring an inactivating mutation of Gnas, the gene encoding the alpha-subunit of Gs, selectively in K-cells. Metabolic phenotyping studies showed that acute or chronic stimulation of K-cell Gs signaling greatly improved impaired glucose homeostasis in obese mice and in a mouse model of type 2 diabetes, due to enhanced GIP secretion. In contrast, K-cell-specific Gnas knockout mice displayed markedly reduced plasma GIP levels. These data strongly suggest that strategies aimed at enhancing K-cell Gs signaling may prove useful for the treatment of diabetes and related metabolic diseases.

2.
PLoS One ; 19(10): e0308942, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39378212

RESUMEN

BACKGROUND: Enteroendocrine cells (EECs) produce over 20 gut hormones which contribute to intestinal physiology, nutrient metabolism and the regulation of food intake. The objective of this study was to generate a comprehensive transcriptomic map of mouse EECs from the stomach to the rectum. METHODS: EECs were purified by flow-cytometry from the stomach, upper small intestine, lower small intestine, caecum and large intestine of NeuroD1-Cre mice, and analysed by single cell RNA sequencing. Regional datasets were analysed bioinformatically and combined into a large cluster map. Findings were validated by L-cell calcium imaging and measurements of CCK secretion in vitro. RESULTS: 20,006 EECs across the full gastrointestinal tract could be subdivided based on their full transcriptome into 10 major clusters, each exhibiting a different pattern of gut hormone expression. EECs from the stomach were largely distinct from those found more distally, even when expressing the same hormone. Cell clustering was also observed when performed only using genes related to GPCR cell signalling, revealing GPCRs predominating in different EEC populations. Mc4r was expressed in 55% of Cck-expressing cells in the upper small intestine, where MC4R agonism was found to stimulate CCK release in primary cultures. Many individual EECs expressed more than one hormone as well as machinery for activation by multiple nutrients, which was supported by the finding that the majority of L-cells exhibited calcium responses to multiple stimuli. CONCLUSIONS: This comprehensive transcriptomic map of mouse EECs reveals patterns of GPCR and hormone co-expression that should be helpful in predicting the effects of nutritional and pharmacological stimuli on EECs from different regions of the gut. The finding that MC4R agonism stimulates CCK secretion adds to our understanding of the melanocortin system.


Asunto(s)
Células Enteroendocrinas , Tracto Gastrointestinal , Análisis de la Célula Individual , Transcriptoma , Animales , Células Enteroendocrinas/metabolismo , Ratones , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/citología , Masculino , Perfilación de la Expresión Génica , Colecistoquinina/metabolismo , Colecistoquinina/genética
3.
Mol Metab ; 84: 101945, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653401

RESUMEN

OBJECTIVE: Glucose dependent insulinotropic polypeptide (GIP) is well established as an incretin hormone, boosting glucose-dependent insulin secretion. However, whilst anorectic actions of its sister-incretin glucagon-like peptide-1 (GLP-1) are well established, a physiological role for GIP in appetite regulation is controversial, despite the superior weight loss seen in preclinical models and humans with GLP-1/GIP dual receptor agonists compared with GLP-1R agonism alone. METHODS: We generated a mouse model in which GIP expressing K-cells can be activated through hM3Dq Designer Receptor Activated by Designer Drugs (DREADD, GIP-Dq) to explore physiological actions of intestinally-released GIP. RESULTS: In lean mice, Dq-stimulation of GIP expressing cells increased plasma GIP to levels similar to those found postprandially. The increase in GIP was associated with improved glucose tolerance, as expected, but also triggered an unexpected robust inhibition of food intake. Validating that this represented a response to intestinally-released GIP, the suppression of food intake was prevented by injecting mice peripherally or centrally with antagonistic GIPR-antibodies, and was reproduced in an intersectional model utilising Gip-Cre/Villin-Flp to limit Dq transgene expression to K-cells in the intestinal epithelium. The effects of GIP cell activation were maintained in diet induced obese mice, in which chronic K-cell activation reduced food intake and attenuated body weight gain. CONCLUSIONS: These studies establish a physiological gut-brain GIP-axis regulating food intake in mice, adding to the multi-faceted metabolic effects of GIP which need to be taken into account when developing GIPR-targeted therapies for obesity and diabetes.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Polipéptido Inhibidor Gástrico , Animales , Polipéptido Inhibidor Gástrico/metabolismo , Ratones , Masculino , Ratones Endogámicos C57BL , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de la Hormona Gastrointestinal/genética , Péptido 1 Similar al Glucagón/metabolismo , Mucosa Intestinal/metabolismo , Obesidad/metabolismo , Incretinas/metabolismo
4.
JCI Insight ; 8(10)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37212283

RESUMEN

Central glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) signaling is critical in GIP-based therapeutics' ability to lower body weight, but pathways leveraged by GIPR pharmacology in the brain remain incompletely understood. We explored the role of Gipr neurons in the hypothalamus and dorsal vagal complex (DVC) - brain regions critical to the control of energy balance. Hypothalamic Gipr expression was not necessary for the synergistic effect of GIPR/GLP-1R coagonism on body weight. While chemogenetic stimulation of both hypothalamic and DVC Gipr neurons suppressed food intake, activation of DVC Gipr neurons reduced ambulatory activity and induced conditioned taste avoidance, while there was no effect of a short-acting GIPR agonist (GIPRA). Within the DVC, Gipr neurons of the nucleus tractus solitarius (NTS), but not the area postrema (AP), projected to distal brain regions and were transcriptomically distinct. Peripherally dosed fluorescent GIPRAs revealed that access was restricted to circumventricular organs in the CNS. These data demonstrate that Gipr neurons in the hypothalamus, AP, and NTS differ in their connectivity, transcriptomic profile, peripheral accessibility, and appetite-controlling mechanisms. These results highlight the heterogeneity of the central GIPR signaling axis and suggest that studies into the effects of GIP pharmacology on feeding behavior should consider the interplay of multiple regulatory pathways.


Asunto(s)
Hipotálamo , Receptores de la Hormona Gastrointestinal , Peso Corporal , Tronco Encefálico/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Conducta Alimentaria , Animales
5.
Nutr Bull ; 48(1): 144-153, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36727658

RESUMEN

Understanding how the work environment impacts health behaviours is essential to a life course approach in public health nutrition. A roundtable event 'Workplace Diet and Health - priorities for researchers and practitioners' was held by the Nutrition Society in October 2022. The overarching aims of the roundtable event were to consider (i) the relevance of nutritional wellbeing for employers and organisations, (ii) the research priorities for workplace diet and health and (iii) how researchers and practitioners can work with stakeholders in the development and testing of workplace diet and health interventions and nutritional education. Participants represented a range of stakeholders including dietetic and nutrition professionals working in workplace health, academics and science communication with an interest in workplace diet and health, non-governmental organisations and providers of workplace nutritional health and wellbeing programmes. All roundtable participants agreed that good nutrition and access to healthy food at work was part of corporate responsibility comparable to that of health and safety provision. It was recognised that nutritional wellbeing was not seen as a priority by many companies due to the complexity and wide range of employee health and wellbeing options available and the perceived lack of clear financial benefit. Three priority areas were identified and agreed upon by roundtable participants: (1) strengthening the evidence base to demonstrate the tangible benefit of nutritional wellbeing interventions in the workplace, (2) creating a knowledge exchange hub to share best practices and experiences of working across sectors and (3) expand stakeholder engagement in workplace nutritional wellbeing.


Asunto(s)
Terapia Nutricional , Salud Laboral , Humanos , Dieta , Lugar de Trabajo , Estado Nutricional
6.
Biomolecules ; 12(12)2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36551163

RESUMEN

Substantial evidence suggests crosstalk between reproductive and gut-axis but mechanisms linking metabolism and reproduction are still unclear. The present study evaluated the possible role of glucose-dependent-insulinotropic-polypeptide (GIP) and glucagon-like-peptide-1 (GLP-1) in reproductive function by examining receptor distribution and the effects of global GIPR and GLP-1R deletion on estrous cycling and reproductive outcomes in mice. GIPR and GLP-1R gene expression were readily detected by PCR in female reproductive tissues including pituitary, ovaries and uterine horn. Protein expression was confirmed with histological visualisation of incretin receptors using GIPR-Cre and GLP1R-Cre mice in which the incretin receptor expressing cells were fluorescently tagged. Functional studies revealed that female GIPR-/- and GLP-1R-/- null mice exhibited significantly (p < 0.05 and p < 0.01) deranged estrous cycling compared to wild-type controls, indicative of reduced fertility. Furthermore, only 50% and 16% of female GIPR-/- and GLP-1R-/- mice, respectively produced litters with wild-type males across three breeding cycles. Consistent with a physiological role of incretin receptors in pregnancy outcome, litter size was significantly (p < 0.001-p < 0.05) decreased in GIPR-/- and GLP-1R-/- mice. Treatment with oral metformin (300 mg/kg body-weight), an agent used clinically for treatment of PCOS, for a further two breeding periods showed no amelioration of pregnancy outcome except that litter size in the GIPR-/- group was approximately 2 times greater in the second breeding cycle. These data highlight the significance of incretin receptors in modulation of female reproductive function which may provide future targets for pharmacological intervention in reproductive disorders.


Asunto(s)
Fertilidad , Polipéptido Inhibidor Gástrico , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Incretinas , Resultado del Embarazo , Animales , Femenino , Masculino , Ratones , Embarazo , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Reproducción/genética , Fertilidad/genética
7.
Mol Metab ; 66: 101604, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36184065

RESUMEN

OBJECTIVE: Insulin-like peptide 5 (INSL5) signalling, through its cognate receptor relaxin/insulin-like family peptide receptor 4 (RXFP4), has been reported to be orexigenic, and the high fat diet (HFD) preference observed in wildtype mice is altered in Rxfp4 knock-out mice. In this study, we used a new Rxfp4-Cre mouse model to investigate the mechanisms underlying these observations. METHODS: We generated transgenic Rxfp4-Cre mice and investigated central expression of Rxfp4 by RT-qPCR, RNAscope and intraparenchymal infusion of INSL5. Rxfp4-expressing cells were chemogenetically manipulated in global Cre-reporter mice using designer receptors exclusively activated by designer drugs (DREADDs) or after stereotactic injection of a Cre-dependent AAV-DIO-Dq-DREADD targeting a population located in the ventromedial hypothalamus (RXFP4VMH). Food intake and feeding motivation were assessed in the presence and absence of a DREADD agonist. Rxfp4-expressing cells in the hypothalamus were characterised by single-cell RNA-sequencing (scRNAseq) and the connectivity of RXFP4VMH cells was investigated using viral tracing. RESULTS: Rxfp4-Cre mice displayed Cre-reporter expression in the hypothalamus. Active expression of Rxfp4 in the adult mouse brain was confirmed by RT-qPCR and RNAscope. Functional receptor expression was supported by cyclic AMP-responses to INSL5 application in ex vivo brain slices and increased HFD and highly palatable liquid meal (HPM), but not chow, intake after intra-VMH INSL5 infusion. scRNAseq of hypothalamic RXFP4 neurons defined a cluster expressing VMH markers, alongside known appetite-modulating neuropeptide receptors (Mc4r, Cckar and Nmur2). Viral tracing demonstrated RXFP4VMH neural projections to nuclei implicated in hedonic feeding behaviour. Whole body chemogenetic inhibition (Di-DREADD) of Rxfp4-expressing cells, mimicking physiological INSL5-RXFP4 Gi-signalling, increased intake of the HFD and HPM, but not chow, whilst activation (Dq-DREADD), either at whole body level or specifically within the VMH, reduced HFD and HPM intake and motivation to work for the HPM. CONCLUSION: These findings identify RXFP4VMH neurons as regulators of food intake and preference, and hypothalamic RXFP4 signalling as a target for feeding behaviour manipulation.


Asunto(s)
Ingestión de Alimentos , Neuronas , Receptores Acoplados a Proteínas G , Animales , Ratones , Hipotálamo/citología , Hipotálamo/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
8.
Cell Tissue Res ; 389(1): 1-9, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35596811

RESUMEN

The gastrointestinal hormone, insulin-like peptide 5 (INSL5), is found in large intestinal enteroendocrine cells (EEC). One of its functions is to stimulate nerve circuits that increase propulsive activity of the colon through its receptor, the relaxin family peptide 4 receptor (RXFP4). To investigate the mechanisms that link INSL5 to stimulation of propulsion, we have determined the localisation of cells expressing Rxfp4 in the mouse colon, using a reporter mouse to locate cells expressing the gene. The fluorescent signal indicating the location of Rxfp4 expression was in EEC, the greatest overlap of Rxfp4-dependent labelling being with cells containing 5-HT. In fact, > 90% of 5-HT cells were positive for Rxfp4 labelling. A small proportion of cells with Rxfp4-dependent labelling was 5-HT-negative, 11-15% in the distal colon and rectum, and 35% in the proximal colon. Of these, some were identified as L-cells by immunoreactivity for oxyntomodulin. Rxfp4-dependent fluorescence was also found in a sparse population of nerve endings, where it was colocalised with CGRP. We used the RXFP4 agonist, INSL5-A13, to activate the receptor and probe the role of the 5-HT cells in which it is expressed. INSL5-A13 administered by i.p. injection to conscious mice caused an increase in colorectal propulsion that was antagonised by the 5-HT3 receptor blocker, alosetron, also given i.p. We conclude that stimuli that excite INSL5-containing colonic L-cells release INSL5 that, through RXFP4, excites 5-HT release from neighbouring endocrine cells, which in turn acts on 5-HT3 receptors of enteric sensory neurons to elicit propulsive reflexes.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Relaxina , Animales , Células Enterocromafines/metabolismo , Células Enteroendocrinas/metabolismo , Intestino Grueso , Ratones , Serotonina
9.
Appetite ; 174: 106022, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35430298

RESUMEN

OBJECTIVE: The hypothalamus is a key region of the brain implicated in homeostatic regulation, and is an integral centre for the control of feeding behaviour. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones with potent glucoregulatory function through engagement of their respective cognate receptors, GLP-1R and GIPR. Recent evidence indicates that there is a synergistic effect of combining GIP- and GLP-1-based pharmacology on appetite and body weight. The mechanisms underlying the enhanced weight loss exhibited by GIPR/GLP-1R co-agonism are unknown. Gipr and Glp1r are expressed in the hypothalamus in both rodents and humans. To better understand incretin receptor-expressing cell populations, we compared the cell types and expression profiles of Gipr- and Glp1r-expressing hypothalamic cells using single-cell RNA sequencing. METHODS: Using Glp1r-Cre or Gipr-Cre transgenic mouse lines, fluorescent reporters were introduced into either Glp1r- or Gipr-expressing cells, respectively, upon crossing with a ROSA26-EYFP reporter strain. From the hypothalami of these mice, fluorescent Glp1rEYFP+ or GiprEYFP+ cells were FACS-purified and sequenced using single-cell RNA sequencing. Transcriptomic analysis provided a survey of both non-neuronal and neuronal cells, and comparisons between Glp1rEYFP+ and GiprEYFP + populations were made. RESULTS: A total of 14,091 Glp1rEYFP+ and GiprEYFP+ cells were isolated, sequenced and taken forward for bioinformatic analysis. Both Glp1rEYFP+ and GiprEYFP+ hypothalamic populations were transcriptomically highly heterogeneous, representing vascular cell types, oligodendrocytes, astrocytes, microglia, and neurons. The majority of GiprEYFP+ cells were non-neuronal, whereas the Glp1rEYFP+ population was evenly split between neuronal and non-neuronal cell types. Both Glp1rEYFP+ and GiprEYFP+ oligodendrocytes express markers for mature, myelin-forming oligodendrocytes. While mural cells are represented in both Glp1rEYFP+ and GiprEYFP+ populations, Glp1rEYFP+ mural cells are largely smooth muscle cells, while the majority of GiprEYFP+ mural cells are pericytes. The co-expression of regional markers indicate that clusters of Glp1rEYFP+ and GiprEYFP+ neurons have been isolated from the arcuate, ventromedial, lateral, tuberal, suprachiasmatic, and premammillary nuclei of the hypothalamus. CONCLUSIONS: We have provided a detailed comparison of Glp1r and Gipr cells of the hypothalamus with single-cell resolution. This resource will provide mechanistic insight into how engaging Gipr- and Glp1r-expressing cells of the hypothalamus may result in changes in feeding behaviour and energy balance.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Incretinas , Animales , Polipéptido Inhibidor Gástrico/genética , Polipéptido Inhibidor Gástrico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa , Humanos , Hipotálamo/metabolismo , Ratones , Transcriptoma
10.
Front Neurosci ; 16: 832961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464310

RESUMEN

Hypothalamic tanycytes are neural stem and progenitor cells, but little is known of how they are regulated. Here we provide evidence that the cell adhesion molecule, NrCAM, regulates tanycytes in the adult niche. NrCAM is strongly expressed in adult mouse tanycytes. Immunohistochemical and in situ hybridization analysis revealed that NrCAM loss of function leads to both a reduced number of tanycytes and reduced expression of tanycyte-specific cell markers, along with a small reduction in tyrosine hydroxylase-positive arcuate neurons. Similar analyses of NrCAM mutants at E16 identify few changes in gene expression or cell composition, indicating that NrCAM regulates tanycytes, rather than early embryonic hypothalamic development. Neurosphere and organotypic assays support the idea that NrCAM governs cellular homeostasis. Single-cell RNA sequencing (scRNA-Seq) shows that tanycyte-specific genes, including a number that are implicated in thyroid hormone metabolism, show reduced expression in the mutant mouse. However, the mild tanycyte depletion and loss of markers observed in NrCAM-deficient mice were associated with only a subtle metabolic phenotype.

11.
J Physiol ; 600(5): 999-1000, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35229296
12.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35163791

RESUMEN

Therapeutic activation of thermogenic brown adipose tissue (BAT) may be feasible to prevent, or treat, cardiometabolic disease. However, rodents are commonly housed below thermoneutrality (~20 °C) which can modulate their metabolism and physiology including the hyperactivation of brown (BAT) and beige white adipose tissue. We housed animals at thermoneutrality from weaning to chronically supress BAT, mimic human physiology and explore the efficacy of chronic, mild cold exposure (20 °C) and ß3-adrenoreceptor agonism (YM-178) under these conditions. Using metabolic phenotyping and exploratory proteomics we show that transfer from 28 °C to 20 °C drives weight gain and a 125% increase in subcutaneous fat mass, an effect not seen with YM-178 administration, thus suggesting a direct effect of a cool ambient temperature in promoting weight gain and further adiposity in obese rats. Following chronic suppression of BAT, uncoupling protein 1 mRNA was undetectable in the subcutaneous inguinal white adipose tissue (IWAT) in all groups. Using exploratory adipose tissue proteomics, we reveal novel gene ontology terms associated with cold-induced weight gain in BAT and IWAT whilst Reactome pathway analysis highlights the regulation of mitotic (i.e., G2/M transition) and metabolism of amino acids and derivatives pathways. Conversely, YM-178 had minimal metabolic-related effects but modified pathways involved in proteolysis (i.e., eukaryotic translation initiation) and RNA surveillance across both tissues. Taken together these findings are indicative of a novel mechanism whereby animals increase body weight and fat mass following chronic suppression of adaptive thermogenesis from weaning. In addition, treatment with a B3-adrenoreceptor agonist did not improve metabolic health in obese animals raised at thermoneutrality.


Asunto(s)
Acetanilidas/administración & dosificación , Tejido Adiposo Pardo/metabolismo , Proteómica/métodos , Tiazoles/administración & dosificación , Aumento de Peso/genética , Acetanilidas/farmacología , Tejido Adiposo Pardo/efectos de los fármacos , Animales , Frío , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Grasa Subcutánea/metabolismo , Termogénesis/efectos de los fármacos , Tiazoles/farmacología , Proteína Desacopladora 1/genética
13.
J Physiol ; 600(4): 697-698, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35165901

Asunto(s)
Obesidad , Humanos
15.
J Physiol ; 600(5): 1053-1078, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34152020

RESUMEN

The number of people living with obesity has tripled worldwide since 1975 with serious implications for public health, as obesity is linked to a significantly higher chance of early death from associated comorbidities (metabolic syndrome, type 2 diabetes, cardiovascular disease and cancer). As obesity is a consequence of food intake exceeding the demands of energy expenditure, efforts are being made to better understand the homeostatic and hedonic mechanisms governing food intake. Gastrointestinal peptides are secreted from enteroendocrine cells in response to nutrient and energy intake, and modulate food intake either via afferent nerves, including the vagus nerve, or directly within the central nervous system, predominantly gaining access at circumventricular organs. Enteroendocrine hormones modulate homeostatic control centres at hypothalamic nuclei and the dorso-vagal complex. Additional roles of these peptides in modulating hedonic food intake and/or preference via the neural systems of reward are starting to be elucidated, with both peripheral and central peptide sources potentially contributing to central receptor activation. Pharmacological interventions and gastric bypass surgery for the treatment of type 2 diabetes and obesity elevate enteroendocrine hormone levels and also alter food preference. Hence, understanding of the hedonic mechanisms mediated by gut peptide action could advance development of potential therapeutic strategies for the treatment of obesity and its comorbidities.


Asunto(s)
Diabetes Mellitus Tipo 2 , Regulación del Apetito/fisiología , Ingestión de Alimentos , Tracto Gastrointestinal/fisiología , Humanos , Obesidad , Péptidos
16.
Artículo en Inglés | MEDLINE | ID: mdl-32265830

RESUMEN

Aim: Exercise training elicits diverse effects on brown (BAT) and white adipose tissue (WAT) physiology in rodents housed below their thermoneutral zone (i.e., 28-32°C). In these conditions, BAT is chronically hyperactive and, unlike human residence, closer to thermoneutrality. Therefore, we set out to determine the effects of exercise training in obese animals at 28°C (i.e., thermoneutrality) on BAT and WAT in its basal (i.e., inactive) state. Methods: Sprague-Dawley rats (n = 12) were housed at thermoneutrality from 3 weeks of age and fed a high-fat diet. At 12 weeks of age half these animals were randomized to 4-weeks of swim-training (1 h/day, 5 days per week). Following a metabolic assessment interscapular and perivascular BAT and inguinal (I)WAT were taken for analysis of thermogenic genes and the proteome. Results: Exercise attenuated weight gain but did not affect total fat mass or thermogenic gene expression. Proteomics revealed an impact of exercise training on 2-oxoglutarate metabolic process, mitochondrial respiratory chain complex IV, carbon metabolism, and oxidative phosphorylation. This was accompanied by an upregulation of multiple proteins involved in skeletal muscle physiology in BAT and an upregulation of muscle specific markers (i.e., Myod1, CkM, Mb, and MyoG). UCP1 mRNA was undetectable in IWAT with proteomics highlighting changes to DNA binding, the positive regulation of apoptosis, HIF-1 signaling and cytokine-cytokine receptor interaction. Conclusion: Exercise training reduced weight gain in obese animals at thermoneutrality and is accompanied by an oxidative signature in BAT which is accompanied by a muscle-like signature rather than induction of thermogenic genes. This may represent a new, UCP1-independent pathway through which BAT physiology is regulated by exercise training.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Transdiferenciación Celular/genética , Músculo Esquelético/metabolismo , Obesidad/terapia , Condicionamiento Físico Animal/fisiología , Temperatura , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/fisiología , Animales , Metabolismo Energético/genética , Perfilación de la Expresión Génica , Masculino , Obesidad/metabolismo , Ratas , Ratas Sprague-Dawley , Termogénesis/fisiología , Transcriptoma
17.
Diabetologia ; 63(7): 1396-1407, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32342115

RESUMEN

AIMS/HYPOTHESIS: Insulin-like peptide-5 (INSL5) is found only in distal colonic L cells, which co-express glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). GLP-1 is a well-known insulin secretagogue, and GLP-1 and PYY are anorexigenic, whereas INSL5 is considered orexigenic. We aimed to clarify the metabolic impact of selective stimulation of distal colonic L cells in mice. METHODS: Insl5 promoter-driven expression of Gq-coupled Designer Receptor Exclusively Activated by Designer Drugs (DREADD) was employed to activate distal colonic L cells (LdistalDq). IPGTT and food intake were assessed with and without DREADD activation. RESULTS: LdistalDq cell stimulation with clozapine N-oxide (CNO; 0.3 mg/kg i.p.) increased plasma GLP-1 and PYY (2.67- and 3.31-fold, respectively); INSL5 was not measurable in plasma but was co-secreted with GLP-1 and PYY in vitro. IPGTT (2 g/kg body weight) revealed significantly improved glucose tolerance following CNO injection. CNO-treated mice also exhibited reduced food intake and body weight after 24 h, and increased defecation, the latter being sensitive to 5-hydroxytryptamine (5-HT) receptor 3 inhibition. Pre-treatment with a GLP1 receptor-blocking antibody neutralised the CNO-dependent improvement in glucose tolerance but did not affect the reduction in food intake, and an independent group of animals pair-fed to the CNO-treatment group demonstrated attenuated weight loss. Pre-treatment with JNJ-31020028, a neuropeptide Y receptor type 2 antagonist, abolished the CNO-dependent effect on food intake. Assessment of whole body physiology in metabolic cages revealed LdistalDq cell stimulation increased energy expenditure and increased activity. Acute CNO-induced food intake and glucose homeostasis outcomes were maintained after 2 weeks on a high-fat diet. CONCLUSIONS/INTERPRETATION: This proof-of-concept study demonstrates that selective distal colonic L cell stimulation has beneficial metabolic outcomes. Graphical abstract.


Asunto(s)
Colon/metabolismo , Células L/metabolismo , Animales , Colon/citología , Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Masculino , Ratones , Péptido YY/metabolismo , Proteínas/metabolismo
18.
Mol Metab ; 31: 45-54, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918921

RESUMEN

OBJECTIVE: Fibroblast growth factor 21 (FGF21) has been shown to rapidly lower body weight in the Siberian hamster, a preclinical model of adiposity. This induced negative energy balance mediated by FGF21 is associated with both lowered caloric intake and increased energy expenditure. Previous research demonstrated that adipose tissue (AT) is one of the primary sites of FGF21 action and may be responsible for its ability to increase the whole-body metabolic rate. The present study sought to determine the relative importance of white (subcutaneous AT [sWAT] and visceral AT [vWAT]), and brown (interscapular brown AT [iBAT]) in governing FGF21-mediated metabolic improvements using the tissue-specific uptake of glucose and lipids as a proxy for metabolic activity. METHODS: We used positron emission tomography-computed tomography (PET-CT) imaging in combination with both glucose (18F-fluorodeoxyglucose) and lipid (18F-4-thiapalmitate) tracers to assess the effect of FGF21 on the tissue-specific uptake of these metabolites and compared responses to a control group pair-fed to match the food intake of the FGF21-treated group. In vivo imaging was combined with ex vivo tissue-specific functional, biochemical, and molecular analyses of the nutrient uptake and signaling pathways. RESULTS: Consistent with previous findings, FGF21 reduced body weight via reduced caloric intake and increased energy expenditure in the Siberian hamster. PET-CT studies demonstrated that FGF21 increased the uptake of glucose in BAT and WAT independently of reduced food intake and body weight as demonstrated by imaging of the pair-fed group. Furthermore, FGF21 increased glucose uptake in the primary adipocytes, confirming that these in vivo effects may be due to a direct action of FGF21 at the level of the adipocytes. Mechanistically, the effects of FGF21 are associated with activation of the ERK signaling pathway and upregulation of GLUT4 protein content in all fat depots. In response to treatment with FGF21, we observed an increase in the markers of lipolysis and lipogenesis in both the subcutaneous and visceral WAT depots. In contrast, FGF21 was only able to directly increase the uptake of lipid into BAT. CONCLUSIONS: These data identify brown and white fat depots as primary peripheral sites of action of FGF21 in promoting glucose uptake and also indicate that FGF21 selectively stimulates lipid uptake in brown fat, which may fuel thermogenesis.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/metabolismo , Tejido Adiposo/diagnóstico por imagen , Animales , Cricetinae , Masculino , Phodopus , Tomografía Computarizada por Tomografía de Emisión de Positrones
19.
Mol Metab ; 29: 158-169, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31668387

RESUMEN

OBJECTIVE: Enteroendocrine cells (EECs) of the large intestine, found scattered in the epithelial layer, are known to express different hormones, with at least partial co-expression of different hormones in the same cell. Here we aimed to categorize colonic EECs and to identify possible targets for selective recruitment of hormones. METHODS: Single cell RNA-sequencing of sorted enteroendocrine cells, using NeuroD1-Cre x Rosa26-EYFP mice, was used to cluster EECs from the colon and rectum according to their transcriptome. G-protein coupled receptors differentially expressed across clusters were identified, and, as a proof of principle, agonists of Agtr1a and Avpr1b were tested as candidate EEC secretagogues in vitro and in vivo. RESULTS: EECs from the large intestine separated into 7 clear clusters, 4 expressing higher levels of Tph1 (enzyme required for serotonin (5-HT) synthesis; enterochromaffin cells), 2 enriched for Gcg (encoding glucagon-like peptide-1, GLP-1, L-cells), and the 7th expressing somatostatin (D-cells). Restricted analysis of L-cells identified 4 L-cell sub-clusters, exhibiting differential expression of Gcg, Pyy (Peptide YY), Nts (neurotensin), Insl5 (insulin-like peptide 5), Cck (cholecystokinin), and Sct (secretin). Expression profiles of L- and enterochromaffin cells revealed the clustering to represent gradients along the crypt-surface (cell maturation) and proximal-distal gut axes. Distal colonic/rectal L-cells differentially expressed Agtr1a and the ligand angiotensin II was shown to selectively increase GLP-1 and PYY release in vitro and GLP-1 in vivo. CONCLUSION: EECs in the large intestine exhibit differential expression gradients along the crypt-surface and proximal-distal axes. Distal L-cells can be differentially stimulated by targeting receptors such as Agtr1a.


Asunto(s)
Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Proteínas/metabolismo , Transcriptoma , Animales , Células Enteroendocrinas/citología , Femenino , Péptido 1 Similar al Glucagón/genética , Insulina/genética , Intestino Grueso/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Péptido YY/genética , Péptido YY/metabolismo , Proteínas/genética , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Análisis de la Célula Individual , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
20.
PLoS One ; 14(8): e0221517, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31465472

RESUMEN

TLQP-21, a peptide encoded by the highly conserved vgf gene, is expressed in neuroendocrine cells and has been the most prominent VGF-derived peptide studied in relation to control of energy balance. The recent discovery that TLQP-21 is the natural agonist for the complement 3a receptor 1 (C3aR1) has revived interest in this peptide as a potential drug target for obesity. We have investigated its function in Siberian hamsters (Phodopus sungorus), a rodent that displays natural seasonal changes in body weight and adiposity as an adaptation to survive winter. We have previously shown that intracerebroventricular administration of TLQP-21 reduced food intake and body weight in hamsters in their long-day fat state. The aim of our current study was to determine the systemic actions of TLQP-21 on food intake, energy expenditure and body weight, and to establish whether adiposity affected these responses. Peripheral infusion of TLQP-21 (1mg/kg/day for 7 days) in lean hamsters exposed to short photoperiods (SP) reduced cumulative food intake in the home cage (p<0.05), and intake when measured in metabolic cages (P<0.01). Energy expenditure was significantly increased (p<0.001) by TLQP-21 infusion, this was associated with a significant increase in uncoupling protein 1 mRNA in brown adipose tissue (BAT) (p<0.05), and body weight was significantly reduced (p<0.05). These effects of systemic TLQP-21 treatment were not observed in hamsters exposed to long photoperiod (LP) with a fat phenotype. C3aR1 mRNA and protein were abundantly expressed in the hypothalamus, brown and white adipose tissue in hamsters, but changes in expression cannot explain the differential response to TLQP-21 in lean and fat hamsters.


Asunto(s)
Adiposidad/efectos de los fármacos , Neuropéptidos/farmacología , Fragmentos de Péptidos/farmacología , Fotoperiodo , Animales , Biomarcadores , Encéfalo/metabolismo , Dióxido de Carbono/metabolismo , Cricetinae , Metabolismo Energético , Femenino , Expresión Génica , Oxígeno/metabolismo , Receptores de Complemento/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...