Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 5422, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780647

RESUMEN

Climate warming is expected to cause a poleward spread of species, resulting in increased richness at mid to high latitudes and weakening the latitudinal diversity gradient. We used pollen data to test if such a change in the latitudinal diversity gradient occurred during the last major poleward shift of plant species in Europe following the end of the last glacial period. In contrast to expectations, the slope of the gradient strengthened during the Holocene. The increase in temperatures around 10 ka ago reduced diversity at mid to high latitude sites due to the gradual closure of forests. Deforestation and the introduction of agriculture during the last 5 ky had a greater impact on richness in central Europe than the earlier climate warming. These results do not support the current view that global warming alone will lead to a loss in biodiversity, and demonstrate that non-climatic human impacts on the latitudinal diversity gradient is of a greater magnitude than climate change.


Asunto(s)
Biodiversidad , Ecología , Calentamiento Global , Plantas , Polen , Cambio Climático , Europa (Continente)
2.
Science ; 361(6405): 920-923, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30166491

RESUMEN

Impacts of global climate change on terrestrial ecosystems are imperfectly constrained by ecosystem models and direct observations. Pervasive ecosystem transformations occurred in response to warming and associated climatic changes during the last glacial-to-interglacial transition, which was comparable in magnitude to warming projected for the next century under high-emission scenarios. We reviewed 594 published paleoecological records to examine compositional and structural changes in terrestrial vegetation since the last glacial period and to project the magnitudes of ecosystem transformations under alternative future emission scenarios. Our results indicate that terrestrial ecosystems are highly sensitive to temperature change and suggest that, without major reductions in greenhouse gas emissions to the atmosphere, terrestrial ecosystems worldwide are at risk of major transformation, with accompanying disruption of ecosystem services and impacts on biodiversity.


Asunto(s)
Biodiversidad , Cambio Climático
3.
Ecol Lett ; 20(3): 336-346, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28090754

RESUMEN

Plant communities are not stable over time and biological novelty is predicted to emerge due to climate change, the introduction of exotic species and land-use change. However, the rate at which this novelty may arise over longer time periods has so far received little attention. We reconstruct the emergence of novelty in Europe for a set of baseline conditions over the past 15 000 years to assess past rates of emergence and investigate underlying causes. The emergence of novelty is baseline specific and, during the early-Holocene, was mitigated by the rapid spread of plant taxa. Although novelty generally increases as a function of time, climate and human-induced landscape changes contributed to a non-linear post-glacial trajectory of novelty with jumps corresponding to periods of rapid changes. Emergence of novelty accelerated during the past 1000 years. Historical cultural landscapes experienced a faster novelty development due to the contribution from anthropogenic land-cover changes.


Asunto(s)
Biota , Cambio Climático , Dispersión de las Plantas , Agricultura , Europa (Continente) , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...