Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 102(1): 166-75, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24445605

RESUMEN

AIMS: Cardiac function depends on the highly regulated and co-ordinate activity of a large ensemble of potassium channels that control myocyte repolarization. While voltage-gated K(+) channels have been well characterized in the heart, much less is known about regulation and/or targeting of two-pore K(+) channel (K(2P)) family members, despite their potential importance in modulation of heart function. METHODS AND RESULTS: Here, we report a novel molecular pathway for membrane targeting of TREK-1, a mechano-sensitive K(2P) channel regulated by environmental and physical factors including membrane stretch, pH, and polyunsaturated fatty acids (e.g. arachidonic acid). We demonstrate that ß(IV)-spectrin, an actin-associated protein, is co-localized with TREK-1 at the myocyte intercalated disc, associates with TREK-1 in the heart, and is required for TREK-1 membrane targeting. Mice expressing ß(IV)-spectrin lacking TREK-1 binding (qv(4J)) display aberrant TREK-1 membrane localization, decreased TREK-1 activity, delayed action potential repolarization, and arrhythmia without apparent defects in localization/function of other cardiac potassium channel subunits. Finally, we report abnormal ß(IV)-spectrin levels in human heart failure. CONCLUSIONS: These data provide new insight into membrane targeting of TREK-1 in the heart and establish a broader role for ß(IV)-spectrin in organizing functional membrane domains critical for normal heart function.


Asunto(s)
Miocardio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Espectrina/metabolismo , Animales , Membrana Celular/metabolismo , Ratones , Miocardio/citología
2.
Circulation ; 126(17): 2084-94, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23008441

RESUMEN

BACKGROUND: Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked to potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite more than a decade of investigation. Posttranslational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel posttranslational modifications and disease. We recently identified a novel pathway for posttranslational regulation of the primary cardiac voltage-gated Na(+) channel (Na(v)1.5) by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, a role for this pathway in cardiac disease has not been evaluated. METHODS AND RESULTS: We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Na(v)1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Na(v)1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that the human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Na(v)1.5, resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel, resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large-animal model of acquired heart disease and in failing human myocardium. CONCLUSIONS: We identify the mechanism for 2 human arrhythmia variants that affect Na(v)1.5 channel activity through direct effects on channel posttranslational modification. We propose that the CaMKII phosphorylation motif in the Na(v)1.5 DI-DII cytoplasmic loop is a critical nodal point for proarrhythmic changes to Na(v)1.5 in congenital and acquired cardiac disease.


Asunto(s)
Arritmias Cardíacas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Arritmias Cardíacas/enzimología , Arritmias Cardíacas/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células Cultivadas , Citoplasma/enzimología , Citoplasma/genética , Citoplasma/metabolismo , Perros , Variación Genética , Células HEK293 , Humanos , Ratones , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fosforilación , Procesamiento Proteico-Postraduccional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA