Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 867
Filtrar
1.
Small ; : e2403024, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773882

RESUMEN

Immuno-stimulative effect of chemotherapy (ISECT) is recognized as a potential alternative to conventional immunotherapies, however, the clinical application is constrained by its inefficiency. Metronomic chemotherapy, though designed to overcome these limitations, offers inconsistent results, with effectiveness varying based on cancer types, stages, and patient-specific factors. In parallel, a wealth of preclinical nanomaterials holds considerable promise for ISECT improvement by modulating the cancer-immunity cycle. In the area of biomedical nanomaterials, current literature reviews mainly concentrate on a specific category of nanomaterials and nanotechnological perspectives, while two essential issues are still lacking, i.e., a comprehensive analysis addressing the causes for ISECT inefficiency and a thorough summary elaborating the nanomaterials for ISECT improvement. This review thus aims to fill these gaps and catalyze further development in this field. For the first time, this review comprehensively discusses the causes of ISECT inefficiency. It then meticulously categorizes six types of nanomaterials for improving ISECT. Subsequently, practical strategies are further proposed for addressing inefficient ISECT, along with a detailed discussion on exemplary nanomedicines. Finally, this review provides insights into the challenges and perspectives for improving chemo-immunotherapy by innovations in nanomaterials.

2.
Chem Biodivers ; : e202400817, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775105

RESUMEN

Four undescribed sesquiterpenes, atramacrolodes A-D (1-4), along with six known compounds 5-10 were isolated from the rhizome of Atractylodes macrocephala. Compound 3 possessed a new skeleton based on an unprecedented carton-carton connection. Their structures were determined by UV, IR, HRESIMS, NMR spectra, 13C NMR calculation with DP4+ analysis, and the comparison of experimental and calculated ECD spectra. Compounds 5 and 8 showed protective effects against paracetamol-induced liver cell injury.

3.
Signal Transduct Target Ther ; 9(1): 107, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38697972

RESUMEN

Cholangiocarcinoma (CCA) is a highly malignant biliary tract cancer with currently suboptimal diagnostic and prognostic approaches. We present a novel system to monitor CCA using exosomal circular RNA (circRNA) via serum and biliary liquid biopsies. A pilot cohort consisting of patients with CCA-induced biliary obstruction (CCA-BO, n = 5) and benign biliary obstruction (BBO, n = 5) was used to identify CCA-derived exosomal circRNAs through microarray analysis. This was followed by a discovery cohort (n = 20) to further reveal a CCA-specific circRNA complex (hsa-circ-0000367, hsa-circ-0021647, and hsa-circ-0000288) in both bile and serum exosomes. In vitro and in vivo studies revealed the three circRNAs as promoters of CCA invasiveness. Diagnostic and prognostic models were established and verified by two independent cohorts (training cohort, n = 184; validation cohort, n = 105). An interpreter-free diagnostic model disclosed the diagnostic power of biliary exosomal circRNA signature (Bile-DS, AUROC = 0.947, RR = 6.05) and serum exosomal circRNA signature (Serum-DS, AUROC = 0.861, RR = 4.04) compared with conventional CA19-9 (AUROC = 0.759, RR = 2.08). A prognostic model of CCA undergoing curative-intent surgery was established by calculating early recurrence score, verified with bile samples (Bile-ERS, C-index=0.783) and serum samples (Serum-ERS, C-index = 0.782). These models, combined with other prognostic factors revealed by COX-PH model, enabled the establishment of nomograms for recurrence monitoring of CCA. Our study demonstrates that the exosomal triple-circRNA panel identified in both bile and serum samples serves as a novel diagnostic and prognostic tool for the clinical management of CCA.


Asunto(s)
Colangiocarcinoma , Exosomas , ARN Circular , Humanos , ARN Circular/genética , ARN Circular/sangre , Colangiocarcinoma/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangre , Colangiocarcinoma/patología , Exosomas/genética , Masculino , Femenino , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Persona de Mediana Edad , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/sangre , Neoplasias de los Conductos Biliares/patología , Pronóstico , Colestasis/genética , Colestasis/diagnóstico , Colestasis/sangre
4.
Artículo en Inglés | MEDLINE | ID: mdl-38781497

RESUMEN

BACKGROUND AND OBJECTIVES: Drug-coated balloons (DCBs) have exhibited promising results in coronary and peripheral artery diseases, but conclusive evidence is lacking in intracranial vasculature. We assessed the safety and efficacy of DCBs vs stent angioplasty for symptomatic intracranial atherosclerotic stenosis (sICAS) and initially identified patients who might have benefited most from DCB treatment. METHODS: A single-center, retrospective cohort study was conducted from June 2021 to May 2022 with 154 patients with sICAS divided into 2 treatment groups: a DCB group (with or without remedial stenting, n = 47) and a stent group (n = 107). The treatment outcomes were compared using 1:2 propensity score matching. The primary safety end point was perioperative stroke or mortality, and the primary efficacy end point was the rate of target vessel restenosis at 12 months. The degree of luminal change was analyzed as a subgroup, defined as the difference between the degree of stenosis at follow-up and immediately after intervention. RESULTS: One hundred eighteen patients were enrolled using propensity score matching, with 43 patients in the DCB group and 75 in the stent group. The incidence of perioperative adverse events was 2.3% in the DCB group and 8.0% in the stent group (P = .420). At a median follow-up of 12 months, the incidence of restenosis (11.9% [5/43] vs 28.0% [21/75], P = .045) and the median degree of stenosis (30% [20%, 44%] vs 30% [30%, 70%], P = .009, CI [0-0.01, 0.2]) were significantly lower in the DCB group than in the stent group. DCB angioplasty effectively prevented adverse events in the target vessel area and significantly reduced the degree of luminal change in the M1 segment of the middle cerebral artery (0 [0, 15%] vs 10% [0, 50%], P = .016). CONCLUSION: DCB angioplasty might be a safe and effective alternative to stent angioplasty to treat sICAS, particularly among patients with M1 segment of the middle cerebral artery stenosis.

5.
Virol Sin ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782261

RESUMEN

Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to requirement for maximum containment laboratories when studying infectious virus, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of MLAV and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provided new information about bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.

6.
Chin J Cancer Res ; 36(2): 226-232, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38751434

RESUMEN

Colorectal cancer has a high incidence and mortality rate in China, with the majority of cases being middle and low rectal cancer. Surgical intervention is currently the main treatment modality for locally advanced rectal cancer, with the common goal of improving oncological outcomes while preserving function. The controversy regarding the circumferential resection margin distance in rectal cancer surgery has been resolved. With the promotion of neoadjuvant therapy concepts and advancements in technology, treatment strategies have become more diverse. Following tumor downstaging, there is an increasing trend towards extending the safe distance of distal rectal margin. This provides more opportunities for patients with low rectal cancer to preserve their anal function. However, there is currently no consensus on the specific distance of distal resection margin.

7.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673820

RESUMEN

C-TERMINALLY ENCODED PEPTIDEs (CEPs) are a class of peptide hormones that have been shown in previous studies to play an important role in regulating the development and response to abiotic stress in model plants. However, their role in cotton is not well understood. In this study, we identified 54, 59, 34, and 35 CEP genes from Gossypium hirsutum (2n = 4x = 52, AD1), G. barbadense (AD2), G. arboreum (2n = 2X = 26, A2), and G. raimondii (2n = 2X = 26, D5), respectively. Sequence alignment and phylogenetic analyses indicate that cotton CEP proteins can be categorized into two subgroups based on the differentiation of their CEP domain. Chromosomal distribution and collinearity analyses show that most of the cotton CEP genes are situated in gene clusters, suggesting that segmental duplication may be a critical factor in CEP gene expansion. Expression pattern analyses showed that cotton CEP genes are widely expressed throughout the plant, with some genes exhibiting specific expression patterns. Ectopic expression of GhCEP46-D05 in Arabidopsis led to a significant reduction in both root length and seed size, resulting in a dwarf phenotype. Similarly, overexpression of GhCEP46-D05 in cotton resulted in reduced internode length and plant height. These findings provide a foundation for further investigation into the function of cotton CEP genes and their potential role in cotton breeding.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Familia de Multigenes , Filogenia , Proteínas de Plantas , Gossypium/genética , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Cromosomas de las Plantas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Desarrollo de la Planta/genética , Péptidos/genética , Péptidos/metabolismo , Mapeo Cromosómico , Genes de Plantas
8.
Sci China Life Sci ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38561484

RESUMEN

The basic mechanism of heterosis has not been systematically and completely characterized. In previous studies, we obtained three economically important fishes that exhibit rapid growth, WR (WCC ♀ × RCC ♂), WR-II (WR ♀ × WCC ♂), and WR-III (WR-II ♀ × 4nAU ♂), through distant hybridization. However, the mechanism underlying this rapid growth remains unclear. In this study, we found that WR, WR-II, and WR-III showed muscle hypertrophy and higher muscle protein and fat contents compared with their parent species (RCC and WCC). Candidate genes responsible for this rapid growth were then obtained through an analysis of 12 muscle transcriptomes. Notably, the mRNA level of mstnb (myostatin b), which is a negative regulator of myogenesis, was significantly reduced in WR, WR-II, and WR-III compared with the parent species. To verify the function of mstnb, a mstnb-deficient mutant RCC line was generated using the CRISPR-Cas9 technique. The average body weight of mstnb-deficient RCC at 12 months of age was significantly increased by 29.57% compared with that in wild-type siblings. Moreover, the area and number of muscle fibers were significantly increased in mstnb-deficient RCC, indicating hypertrophy and hyperplasia. Furthermore, the muscle protein and fat contents were significantly increased in mstnb-deficient RCC. The molecular regulatory mechanism of mstnb was then revealed by transcription profiling, which showed that genes related to myogenesis (myod, myog, and myf5), protein synthesis (PI3K-AKT-mTOR), and lipogenesis (pparγ and fabp3) were highly activated in hybrid fishes and mstnb-deficient RCC. This study revealed that low expression or deficiency of mstnb regulates somatic growth by promoting myogenesis, protein synthesis, and lipogenesis in hybrid fishes and mstnb-deficient RCC, which provides evidence for the molecular mechanism of heterosis via distant hybridization.

9.
J Pharm Anal ; 14(4): 100915, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634065

RESUMEN

Pien Tze Huang (PZH), a class I nationally protected traditional Chinese medicine (TCM), has been used to treat liver diseases such as hepatitis; however, the effect of PZH on the progression of sepsis is unknown. Here, we reported that PZH attenuated lipopolysaccharide (LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signalling. Mechanistically, PZH stimulated signal transducer and activator of transcription 3 (STAT3) phosphorylation to induce the expression of A20, which could inhibit the activation of NF-κB and MAPK signalling. Knockdown of the bile acid (BA) receptor G protein-coupled bile acid receptor 1 (TGR5) in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction, as well as the LPS-induced inflammatory response, suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5. Consistently, deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20, the activation of NF-κB and MAPK signalling, and the production of proinflammatory cytokines, whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines. Overall, our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.

10.
Microbiome ; 12(1): 72, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600530

RESUMEN

BACKGROUND: Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS: Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS: The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.


Asunto(s)
Quirópteros , Virus , Animales , Animales Salvajes , Genoma Viral/genética , Filogenia , Recombinación Genética , Roedores , Uganda/epidemiología
11.
Front Microbiol ; 15: 1369506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659989

RESUMEN

Single-cell isolation stands as a critical step in single-cell studies, and single-cell ejection technology based on laser induced forward transfer technology (LIFT) is considered one of the most promising methods in this regard for its ability of visible isolating single cell from complex samples. In this study, we improve the LIFT technology and introduce optical vortex laser-induced forward transfer (OV-LIFT) and flat-top laser-induced forward transfer (FT-LIFT) by utilizing spatial light modulator (SLM), aiming to enhance the precision of single-cell sorting and the cell's viability after ejection. Experimental results demonstrate that applying vortex and flat-top beams during the sorting and collection process enables precise retrieval of single cells within diameter ranges of 50 µm and 100 µm, respectively. The recovery rates of Saccharomyces cerevisiae and Escherichia coli DH5α single cell ejected by vortex beam are 89 and 78%, by flat-top beam are 85 and 57%. When employing Gaussian beam sorting, the receiving range extends to 400 µm, with cultivation success rates of S. cerevisiae and E. coli DH5α single cell are 48 and 19%, respectively. This marks the first application of different mode beams in the ejection and cultivation of single cells, providing a novel and effective approach for the precise isolation and improving the viability of single cells.

12.
BMC Cancer ; 24(1): 426, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38584263

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the 3rd most common malignancy with the liver being the most common site of metastases. The recurrence rate of colorectal liver metastases (CRLM) after liver resection (LR) is notably high, with an estimated 40% of patients experiencing recurrence within 6 months. In this context, we conducted a meta-analysis to synthesize and evaluate the reliability of evidence pertaining to prognostic factors associated with early recurrence (ER) in CRLM following LR. METHODS: Systematic searches were conducted from the inception of databases to July 14, 2023, to identify studies reporting prognostic factors associated with ER. The Quality in Prognostic Factor Studies (QUIPS) tool was employed to assess risk-of-bias for included studies. Meta-analysis was then performed on these prognostic factors, summarized by forest plots. The grading of evidence was based on sample size, heterogeneity, and Egger's P value. RESULTS: The study included 24 investigations, comprising 12705 individuals, during an accrual period that extended from 2007 to 2023. In the evaluation of risk-of-bias, 22 studies were rated as low/moderate risk, while two studies were excluded because of high risk. Most of the studies used a postoperative interval of 6 months to define ER, with 30.2% (95% confidence interval [CI], 24.1-36.4%) of the patients experiencing ER following LR. 21 studies were pooled for meta-analysis. High-quality evidence showed that poor differentiation of CRC, larger and bilobar-distributed liver metastases, major hepatectomy, positive surgical margins, and postoperative complications were associated with an elevated risk of ER. Additionally, moderate-quality evidence suggested that elevated levels of carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA199), lymph node metastases (LNM) of CRC, and a higher number of liver metastases were risk factors for ER. CONCLUSION: This review has the potential to enhance the efficacy of surveillance strategies, refine prognostic assessments, and guide judicious treatment decisions for CRLM patients with high risk of ER. Additionally, it is essential to undertake well-designed prospective investigations to examine additional prognostic factors and develop salvage therapeutic approaches for ER of CRLM.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Hepatectomía , Pronóstico , Neoplasias Colorrectales/cirugía , Neoplasias Colorrectales/patología , Estudios Prospectivos , Reproducibilidad de los Resultados , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/cirugía , Estudios Retrospectivos
13.
Front Neurol ; 15: 1353275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38682035

RESUMEN

Introduction: Ischemic stroke (IS) is a cerebrovascular disease that can be disabling and fatal, and there are limitations in the clinical treatment and prognosis of IS. It has been reported that changes in the expression profile of circRNAs have been found during injury in ischemic stroke, and circRNAs play an important role in the IS cascade response. However, the specific mechanisms involved in the pathogenesis of IS are not yet fully understood, and thus in-depth studies are needed. Methods: In this study, one circRNA dataset (GSE161913), one miRNA dataset (GSE60319) and one mRNA dataset (GSE180470) were retrieved from the Gene Expression Omnibus (GEO) database and included, and the datasets were differentially expressed analyzed by GEO2R and easyGEO to get the DEcircRNA, DEmiRNA and DEmRNA, and DEmRNA was enriched using ImageGP, binding sites were predicted in the ENCORI database, respectively, and the competitive endogenous RNA (ceRNA) regulatory network was visualized by the cytoscape software, and then selected by MCC scoring in the cytoHubba plugin Hub genes. In addition, this study conducted a case-control study in which blood samples were collected from stroke patients and healthy medical examiners to validate the core network of ceRNAs constructed by biosignature analysis by real-time fluorescence quantitative qRT-PCR experiments. Results: A total of 233 DEcircRNAs, 132 DEmiRNAs and 72 DEmRNAs were screened by bioinformatics analysis. circRNA-mediated ceRNA regulatory network was constructed, including 148 circRNAs, 43 miRNAs and 44 mRNAs. Finally, CLEC16A|miR-654-5p|RARA competitive endogenous regulatory axis was selected for validation by qRT-PCR, and the validation results were consistent with the bioinformatics analysis. Discussion: In conclusion, the present study establishes a new axis of regulation associated with IS, providing new insights into the pathogenesis of IS.

14.
Eur J Med Res ; 29(1): 234, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622728

RESUMEN

BACKGROUND: Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD: The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS: The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION: MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.


Asunto(s)
Alphainfluenzavirus , Medicamentos Herbarios Chinos , Virus de la Influenza A , Gripe Humana , Orthomyxoviridae , Neumonía , Ratones , Animales , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Gripe Humana/tratamiento farmacológico , Gripe Humana/genética , Neumonía/tratamiento farmacológico , Neumonía/genética , Inflamación , Biología de Sistemas , Perfilación de la Expresión Génica
15.
Ying Yong Sheng Tai Xue Bao ; 35(2): 533-542, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523112

RESUMEN

Under the background of frequent flood disasters and stock planning challenges, clarifying the relationship and mechanism of urban green space landscape patterns and flood retention efficiency at multiple spatial scales has become a critical scientific issue in realizing the maximum flood retention efficiency of limited urban green spaces and improving the capabilities of urban flood control. We reviewed and summarized the factors, mechanisms, and scale differences in the influence of green space landscape patterns on flood retention efficacy at the urban and block scales. Based on the causes for differences in conclusions and research deficiencies, we suggested that future studies should focus on watershed-scale research and expand the investigation into three-dimensional green space landscape patterns. Additionally, attention should be paid to urban and suburban areas separately, and a set of research indices with indicative significance for the flooding process should be established for different flood-sensitive areas and block structures. These measures will help quantitatively reveal how green space landscape patterns of urban and block scales affect flooding process, providing theoretical guidance for urban planning and establishing urban flood safety patterns.


Asunto(s)
Inundaciones , Ciudades , Planificación de Ciudades , Desastres , Parques Recreativos
16.
Mol Med Rep ; 29(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38516783

RESUMEN

Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis, and its heterogeneity affects the response to clinical treatments. Glycolysis is highly associated with HCC therapy and prognosis. The present study aimed to identify a novel biomarker for HCC by exploring the heterogeneity of glycolysis in HCC. The intersection of both marker genes of glycolysis­related cell clusters from single­cell RNA sequencing analysis and mRNA data of liver HCC from The Cancer Genome Atlas were used to construct a prognostic model through Cox proportional hazard regression and the least absolute shrinkage and selection operator Cox regression. Data from the International Cancer Genome Consortium were used to validate the results of the analysis. Immune status analysis was then conducted. A significant gene in the prognostic model was identified as a potential biomarker and was verified through in vitro experiments. The results revealed that the glycolysis­related prognostic model divided patients with HCC into high­ and low­risk groups. A nomogram combining the model and clinical features exhibited accurate predictive ability, with an area under the curve of 0.763 at 3 years. The high­risk group exhibited a higher expression of checkpoint genes and lower tumor immune dysfunction and exclusion scores, suggesting that this group may be more likely to benefit from immunotherapy. The tumor tissues had a higher zinc finger protein (ZFP)41 mRNA and protein expression compared with the adjacent tissues. In vitro analyses revealed that ZFP41 played a crucial role in cell viability, proliferation, migration, invasion and glycolysis. On the whole, the present study demonstrates that the glycolysis­related prognostic gene, ZFP41, is a potential prognostic biomarker and therapeutic target, and may play a crucial role in glycolysis and malignancy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Factores de Transcripción de Tipo Kruppel , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Glucólisis/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Pronóstico , ARN Mensajero , Análisis de Expresión Génica de una Sola Célula , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Biomarcadores
17.
J Asian Nat Prod Res ; 26(1): 120-129, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38509697

RESUMEN

Three new monoterpene phenol dimers, bisbakuchiols V-X (1-3), and two bakuchiol ethers (4 and 5), along with four known compounds (6-9) were isolated from the fruits of Psoralea corylifolia. Their structures were elucidated based on extensive spectral analysis. The absolute configurations of 1, 2, 4, and 5 were specified by quantum chemical calculations of ECD spectra.


Asunto(s)
Fenol , Psoralea , Fenol/análisis , Frutas/química , Psoralea/química , Monoterpenos , Estructura Molecular , Fenoles/química
18.
FEBS Lett ; 598(6): 702-715, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439679

RESUMEN

Ubiquitination is a cascade reaction involving E1, E2, and E3 enzymes. The orthogonal ubiquitin transfer (OUT) method has been previously established to identify potential substrates of E3 ligases. In this study, we verified the ubiquitination of five substrates mediated by the E3 ligases CHIP and E4B. To further explore the activity of U-box domains of E3 ligases, two mutants with the U-box domains interchanged between CHIP and E4B were generated. They exhibited a significantly reduced ubiquitination ability. Additionally, different E3s recruited similar E2 ubiquitin-conjugating enzymes when ubiquitinating the same substrates, highlighting that U-box domains determined the E2 recruitment, while the substrate determined the E2 selectivity. This study reveals the influence of substrates and U-box domains on E2 recruitment, providing a novel perspective on the function of U-box domains of E3 ligases.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
19.
ACS Nano ; 18(12): 8718-8732, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38465955

RESUMEN

Although stem cell therapy is proved to be a promising strategy for bone repair and regeneration, transplanted allogeneic stem cells generally suffer from unfavorable apoptosis instead of differentiation into osteocytes. How the apoptotic stem cells promote bone regeneration still needs to be uncovered. In this work, we found that apoptotic extracellular vesicles released by allogeneic stem cells are critical mediators for promoting bone regeneration. Based on the results of in vivo experiments, a mechanism of apoptotic stem cells determined autologous stem cell recruitment and enhance osteogenesis was proposed. The nanoscaled apoptotic extracellular vesicles released from transplanted stem cells were endocytosed by vascular endothelial cells and preferentially distribute at endoplasmic reticular region. The oxidized phosphatidylcholine enriched in the vesicles activated the endoplasmic reticulum stress and triggered the reflective elevation of adhesion molecules, which induced the recruitment of autologous stem cells located in the blood vessels, transported them into the defect region, and promoted osteogenesis and bone repair. These findings not only reveal the mechanism of stem cell therapy of bone defects but also provide a cue for investigation of the biological process of stem cell therapy for other diseases and develop stem cell therapeutic strategies.


Asunto(s)
Células Progenitoras Endoteliales , Vesículas Extracelulares , Trasplante de Células Madre Hematopoyéticas , Osteogénesis , Vesículas Extracelulares/metabolismo , Diferenciación Celular
20.
Biomaterials ; 307: 122512, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38430646

RESUMEN

Proteotoxic stress, caused by the accumulation of abnormal unfolded or misfolded cellular proteins, can efficiently activate inflammatory innate immune response. Initiating the mitochondrial proteotoxic stress might go forward to enable the cytosolic release of intramitochondrial DNA (mtDNA) for the immune-related mtDNA-cGAS-STING activation, which however is easily eliminated by a cell self-protection, i.e., mitophagy. In light of this, a nanoinducer (PCM) is reported to trigger mitophagy-inhibited cuproptotic proteotoxicity. Through a simple metal-phenolic coordination, PCMs reduce the original Cu2+ with the phenolic group of PEG-polyphenol-chlorin e6 (Ce6) into Cu+. Cu+ thereby performs its high binding affinity to dihydrolipoamide S-acetyltransferase (DLAT) and aggregates DLAT for cuproptotic proteotoxic stress and mitochondrial respiratory inhibition. Meanwhile, intracellular oxygen saved from the respiratory failure can be utilized by PCM-conjugated Ce6 to boost the proteotoxic stress. Next, PCM-loaded mitophagy inhibitor (Mdivi-1) protects proteotoxic products from being mitophagy-eliminated, which allows more mtDNA to be released in the cytosol and successfully stimulate the cGAS-STING signaling. In vitro and in vivo studies reveal that PCMs can upregulate the tumor-infiltrated NK cells by 24% and enhance the cytotoxic killing of effector T cells. This study proposes an anti-tumor immunotherapy through mitochondrial proteotoxicity.


Asunto(s)
ADN Mitocondrial , Neoplasias , Estrés Proteotóxico , Mitocondrias , Nucleotidiltransferasas , Inmunoterapia , Acetiltransferasa de Residuos Dihidrolipoil-Lisina , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA