Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 672: 161-169, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38838625

RESUMEN

Intelligent shape memory polymer can be potentially used in manufacturing implantable devices that enables a benign variation of implant dimensions with the external stimuli, thus effectively lowering insertion forces and evading associated risks. However, in surgical implantation, biomaterials-associated infection has imposed a huge burden to healthcare system that urgently requires an efficacious replacement of antibiotic usages. Preventing the initial attachment and harvesting a biocidal function upon native surfaces may be deemed as a preferable strategy to tackle the issues of bacterial infection. Herein, a functionalized polylactic acid (PLA) composite membrane assembled with graphene (GE, a widely used photothermal agent) was fabricated through a blending process and then polydimethylsiloxane utilized as binders to pack hydrophobic SiO2 tightly onto polymer surface (denoted as PLA-GE/SiO2). Such an active platform exhibited a moderate shape-memory performance upon near-infrared (NIR) light stimulation, which was feasible for programmed deformation and shape recovery. Particularly stirring was that PLA-GE/SiO2 exerted a pronounced bacteria-killing effect under NIR illumination, 99.9 % of E. coli and 99.8 % of S. aureus were effectively eradicated in a lean period of 5 min. Furthermore, the obtained composite membrane manifested excellent antiadhesive properties, resulting in a bacteria-repelling efficacy of up to 99 % for both E. coli and S. aureus species. These findings demonstrated the potential value of PLA-GE/SiO2 as a shape-restorable platform in "kill&repel" integration strategy, further expanding its applications for clinical anti-infective treatment.

2.
Anal Chem ; 96(17): 6674-6682, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38642044

RESUMEN

Photodynamic therapy (PDT) is a significant noninvasive therapeutic modality, but it is often limited in its application due to the restricted tissue penetration depth caused by the wavelength limitations of the light source. Two-photon (TP) fluorescence techniques are capable of having an excitation wavelength in the NIR region by absorbing two NIR photons simultaneously, which offers the potential to achieve higher spatial resolution for deep tissue imaging. Thus, the adoption of TP fluorescence techniques affords several discernible benefits for photodynamic therapy. Organic TP dyes possess a high fluorescence quantum yield. However, the biocompatibility of organic TP dyes is poor, and the method of coating organic TP dyes with silica can effectively overcome the limitations. Herein, based on the TP silica nanoparticles, a functionalized intelligent biogenic missile TP-SiNPs-G4(TMPyP4)-dsDNA(DOX)-Aptamer (TGTDDA) was developed for effective TP bioimaging and synergistic targeted photodynamic therapy and chemotherapy in tumors. First, the Sgc8 aptamer was used to target the PTK7 receptor on the surface of tumor cells. Under two-photon light irradiation, the intelligent biogenic missile can be activated for TP fluorescence imaging to identify tumor cells and the photosensitizer assembled on the nanoparticle surface can be activated for photodynamic therapy. Additionally, this intelligent biogenic missile enables the controlled release of doxorubicin (DOX). The innovative strategy substantially enhances the targeted therapeutic effectiveness of cancer cells. The intelligent biogenic missile provides an effective method for the early detection and treatment of tumors, which has a good application prospect in the real-time high-sensitivity diagnosis and treatment of tumors.


Asunto(s)
Imagen Óptica , Fotoquimioterapia , Fotones , Fármacos Fotosensibilizantes , Humanos , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Ratones , Nanopartículas/química , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Dióxido de Silicio/química , Aptámeros de Nucleótidos/química , Colorantes Fluorescentes/química , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Antineoplásicos/química , Antineoplásicos/farmacología , Ratones Desnudos , Línea Celular Tumoral , Ratones Endogámicos BALB C
3.
Eur J Ophthalmol ; : 11206721241229474, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38298013

RESUMEN

OBJECTIVES: To evaluate the effect of peripheral defocus soft contact lenses (PDSCLs) on controlling myopia progression in children and adolescents, and to compare it with orthokeratology (Ortho-K) and single vision lenses (SVLs). METHODS: We conducted a systematic search of PubMed, the Cochrane Library, Medline, CNKI, CBM, VIP, and WanFang Data databases for randomized controlled trials (RCTs) and cohort studies that investigated the effects of PDSCLs on myopia control in children and adolescents. The published languages were limited to English and Chinese. The risk bias tool provided by the Cochrane risk-of-bias tool and Newcastle-Ottawa Scale were used to assess the risk bias of included studies of RCTs and CTs. The published biases of included studies were assessed by Egger`s test. RESULTS: We included 21 studies, comprising 13 RCTs and 8 cohort studies, with a total of 1337 participants in the PDSCLs group, 428 in the Ortho-K group, and 707 in the SVLs group. The meta-analysis indicated no significant difference between PDSCLs and Ortho-K in controlling the increase of diopter (MD = 0.01, 95% CI: -0.06, 0.09; P = 0.69) and axial length (MD = -0.01, 95% CI: -0.02, 0.00; P = 0.28). Compared with SVLs, PDSCLs had a better effect in controlling the increase of diopter (MD = 0.23, 95% CI: 0.17, 0.28; P < 0.00001) and axial length (MD = -0.11, 95% CI: -0.12, -0.09; P < 0.00001) in children and adolescents. CONCLUSIONS: Children and adolescents wearing PDSCLs can achieve better myopia control than those wearing SVLs, and their effect is comparable to that of Ortho-K.

4.
Anal Methods ; 16(6): 798-816, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38259224

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein systems are adaptive immune systems unique to archaea and bacteria, with the characteristics of targeted recognition and gene editing to resist the invasion of foreign nucleic acids. Biosensors combined with the CRISPR/Cas system and optical detection technology have attracted much attention in medical diagnoses, food safety, agricultural progress, and environmental monitoring owing to their good sensitivity, high selectivity, and fast detection efficiency. In this review, we introduce the mechanism of CRISPR/Cas systems and developments in this area, followed by summarizing recent progress on CRISPR/Cas system-based optical biosensors combined with colorimetric, fluorescence, electrochemiluminescence and surface-enhanced Raman scattering optical techniques in various fields. Finally, we discuss the challenges and future perspectives of CRISPR/Cas systems in optical biosensors.


Asunto(s)
Bacterias , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Bacterias/genética , Archaea/genética , Archaea/metabolismo , Edición Génica/métodos
5.
Analyst ; 149(3): 807-814, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38116839

RESUMEN

The discovery of reliable biomarkers is essential for early diagnosis, treatment, and prognosis assessment of diseases. Many research studies have shown that circRNA is a potential biomarker for diagnosis and prognosis of diseases. However, in situ monitoring circRNA in live cells is still a challenge at present, which brings a major limitation to the development and verification of circRNA as a disease biomarker. In this study, a catalytic hairpin assembly (CHA) reaction-based DNA octahedral amplifier (DOA) was developed for fluorescence resonance energy transfer (FRET) detection and bioimaging of circRNA in living cells. The DOA was first produced by self-assembling a DNA octahedron with six customized single-stranded DNAs, and two hairpins H1 (Cy3) and H2 (Cy5) were then hybridized to four vertices of the DNA octahedron. Idiopathic pulmonary fibrosis (IPF)-related circHIPK3 was used as the target. Once the CHA reaction from H1 and H2 on DOA was activated by a sequence-specific back-splice junction (BSJ) of circHIPK3, a significant FRET signal can be obtained from Cy3 to Cy5. The circHIPK3 was subsequently released to cause the next CHA reaction. Because the DOA has the advantages of the spatial-confinement effect, resistance to nuclease degradation and easy penetration into cells, rapid and excellent signal amplification FRET detection and bioimaging of endogenous circHIPK3 can be achieved in various cells. This study provides a high-precision assay platform to explore the possibility of using circRNA as a biomarker, and it is valuable for circRNA-related early diagnosis and treatment of diseases.


Asunto(s)
Técnicas Biosensibles , Carbocianinas , MicroARNs , MicroARNs/genética , ARN Circular/genética , ADN/genética , Biomarcadores , Técnicas Biosensibles/métodos , Límite de Detección
6.
Analyst ; 148(23): 5963-5971, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37867382

RESUMEN

Rapid, simultaneous, and sensitive detection of biomolecules has important application prospects in disease diagnosis and biomedical research. However, because the content of intracellular endogenous target biomolecules is usually very low, traditional detection methods can't be used for effective detection and imaging, and to enhance the detection sensitivity, signal amplification strategies are frequently required. The hybridization chain reaction (HCR) has been used to detect many disease biomarkers because of its simple operation, good reproducibility, and no enzyme involvement. Although HCR signal amplification methods have been employed to detect and image intracellular biomolecules, there are still false positive signals. Therefore, a target-triggered enzyme-free amplification system (GHCR system) was developed, as a fluorescent AND-gated sensing platform for intracellular target probing. The false positive signals can be well avoided and the accuracy of detection and imaging can be improved by using the design of the AND gate. Two cancer markers, GSH and miR-1246, were used as two orthogonal inputs for the AND gated probe. The AND-gated probe only works when GSH and miR-1246 are the inputs at the same time, and FRET signals can be the output. In addition to the use of AND-gated imaging, FRET-based high-precision ratiometric fluorescence imaging was employed. FRET-based ratiometric fluorescent probes have a higher ability to resist interference from the intracellular environment, they can avoid false positive signals well, and they are expected to have good specificity. Due to the advantages of HCR, AND-gated, and FRET fluorescent probes, the GHCR system exhibited highly efficient AND-gated FRET bioimaging for intracellular endogenous miRNAs with a lower detection limit of 18 pM, which benefits the applications of ratiometric intracellular biosensing and bioimaging and offers a novel concept for advancing the diagnosis and therapeutic strategies in the field of cancer.


Asunto(s)
Investigación Biomédica , MicroARNs , Neoplasias , Humanos , Colorantes Fluorescentes , Reproducibilidad de los Resultados , MicroARNs/genética , Neoplasias/diagnóstico por imagen
7.
Anal Chem ; 95(40): 14925-14933, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37769239

RESUMEN

Bioimaging is widely used in various fields of modern medicine. Fluorescence imaging has the advantages of high sensitivity, high selectivity, noninvasiveness, in situ imaging, and so on. However, one-photon (OP) fluorescence imaging has problems, such as low tissue penetration depth and low spatiotemporal resolution. These disadvantages can be solved by two-photon (TP) fluorescence imaging. However, TP imaging still uses fluorescence intensity as a signal. The complexity of organisms will inevitably affect the change of fluorescence intensity, cause false-positive signals, and affect the accuracy of the results obtained. Fluorescence lifetime imaging (FLIM) is different from other kinds of fluorescence imaging, which is an intrinsic property of the material and independent of the material concentration and fluorescence intensity. FLIM can effectively avoid the fluctuation of TP imaging based on fluorescence intensity and the interference of autofluorescence. Therefore, based on silica-coated gold nanoclusters (AuNCs@SiO2) combined with nucleic acid probes, the dual-mode nanoprobe platform was constructed for TP and FLIM imaging of intracellular endogenous miRNA-21 for the first time. First, the dual-mode nanoprobe used a dual fluorescence quencher of BHQ2 and graphene oxide (GO), which has a high signal-to-noise ratio and anti-interference. Second, the dual-mode nanoprobe can detect miR-21 with high sensitivity and selectivity in vitro, with a detection limit of 0.91 nM. Finally, the dual-mode nanoprobes performed satisfactory TP fluorescence imaging (330.0 µm penetration depth) and FLIM (τave = 50.0 ns) of endogenous miR-21 in living cells and tissues. The dual-mode platforms have promising applications in miRNA-based early detection and therapy and hold much promise for improving clinical efficacy.

8.
Biosens Bioelectron ; 237: 115519, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37437455

RESUMEN

Self-assembled functional nanomaterials with electromagnetic hot spots are crucial and highly desirable in surface-enhanced Raman scattering (SERS). Due to its versatile biological scaffold, the M13 phage has been employed to produce novel nano-building blocks and devices. In this study, we propose a novel M13 phage-based SERS nanocarrier, that utilizes the pVIII capsid in M13 to conjugate Au@Ag core-shell nanorod (Au@AgNR) with linker carboxy-PEG-thiol (M13-Au@AgNR) and the pIII capsid to specifically target Escherichia coli (E. coli). The M13-Au@AgNR@DTTC (3,3'- diethylthiocarbocyanine iodide) SERS probe was used to detect E. coli in a concentration range of 6 to 6 × 105 cfu/mL, achieving a limit of detection (LOD) of 0.5 cfu/mL. The proposed SERS platform was also tested in real samples, showing good recoveries (92%-114.3%) and a relative standard deviation (RSD) of 1.2%-4.7%. Furthermore, the system demonstrated high antibacterial efficiency against E. coli, approximately 90%, as measured by the standard plate-count method. The investigation provides an effective strategy for in vitro bacteria detection and inactivation.

9.
Chem Eng J ; 4682023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37334100

RESUMEN

Phenol and its derivatives are the most used polymerization inhibitors for vinyl-based monomers. Here, we reported a novel catalytic system composed of mussel inspired adhesive moiety, catechol, in combination with iron oxide nanoparticles (IONPs) to generate hydroxyl radical (•OH) at pH 7.4. Catechol-containing microgel (DHM) was prepared by copolymerizing dopamine methacrylamide (DMA) and N-hydroxyethyl acrylamide (HEAA), which generated superoxide (•O2-) and hydrogen peroxide (H2O2) as a result of catechol oxidation. In the presence of IONPs, the generated reactive oxygen species were further converted to •OH, which initiated free radical polymerization of various water-soluble acrylate-based monomers including neutral (acrylamide, methyl acrylamide, etc.), anionic (2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt), cationic ([2-(methacryloyloxy)ethyl]trimethylammonium chloride), and zwitterionic (2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide) monomers. Compared with the typical free radical initiating systems, the reported system does not require the addition of extra initiators for polymerization. During the process of polymerization, a bilayer hydrogel was formed in situ and exhibited the ability to bend during the process of swelling. The incorporation of IONPs significantly enhanced magnetic property of the hydrogel and the combination of DHM and IONPs also improved the mechanical properties of these hydrogels.

10.
J Intensive Med ; 3(2): 171-184, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37188113

RESUMEN

Background: Penehyclidine hydrochloride (PHC) has been used for many years as an anticholinergic drug for the treatment of acute organophosphorus pesticide poisoning (AOPP). The purpose of this meta-analysis was to explore whether PHC has advantages over atropine in the use of anticholinergic drugs in AOPP. Methods: We searched Scopus, Embase, Cochrane, PubMed, ProQuest, Ovid, Web of Science, China Science and Technology Journal Database (VIP), Duxiu, Chinese Biomedical literature (CBM), WanFang, and Chinese National Knowledge Infrastructure (CNKI), from inception to March 2022. After all qualified randomized controlled trials (RCTs) were included, we conducted quality evaluation, data extraction, and statistical analysis. Statistics using risk ratios (RR), weighted mean difference (WMD), and standard mean difference (SMD). Results: Our meta-analysis included 20,797 subjects from 240 studies across 242 different hospitals in China. Compared with the atropine group, the PHC group showed decreased mortality rate (RR=0.20, 95% confidence intervals [CI]: 0.16-0.25, P <0.001), hospitalization time (WMD=-3.89, 95% CI: -4.37 to -3.41, P <0.001), overall incidence rate of complications (RR=0.35, 95% CI: 0.28-0.43, P <0.001), overall incidence of adverse reactions (RR=0.19, 95% CI: 0.17-0.22, P <0.001), total symptom disappearance time (SMD=-2.13, 95% CI: -2.35 to -1.90, P <0.001), time for cholinesterase activity to return to normal value 50-60% (SMD=-1.87, 95% CI: -2.03 to -1.70, P <0.001), coma time (WMD=-5.57, 95% CI: -7.20 to -3.95, P <0.001), and mechanical ventilation time (WMD=-2.16, 95% CI: -2.79 to -1.53, P <0.001). Conclusion: PHC has several advantages over atropine as an anticholinergic drug in AOPP.

11.
Int J Phytoremediation ; 25(14): 1956-1966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37191287

RESUMEN

Phytoremediation by intercropping is a potential method to realize both production and remediation. Maize and peanut are the main crops planted in arsenic(As) contaminated areas in south China and vulnerable to As pollution. Experiments were conducted on arsenic-polluted soil with low As-accumulating maize monoculture (M), peanut monoculture (P), and intercropping with different distances between the maize and peanut (0.2 m, 0.35 m, and 0.5 m, recorded as MP0.2, MP0.35, and MP0.5, respectively). The results indicated that the As content in the maize grains and peanut lipids in the intercropping system decreased significantly, meeting the food safety standard of China (GB 2762-2017). Moreover, the land equivalent ratio (LER) and heavy metal removal equivalence ratio (MRER) of all intercropping treatments were greater than 1, indicating that this intercropping agrosystem has the advantage of production and arsenic removal, among which the yield and LER of MP0.35 treatment were the highest. Additionally, the bioconcentration factors (BCF) and translocation factor (TF) of MP0.2 increased by 117.95% and 16.89%, respectively, indicating that the root interaction affected the absorption of As in soil by crops. This study preliminarily demonstrated the feasibility of this intercropping system to safely use and remedy arsenic-contaminated farmland during production.


Phytoremediation by intercropping is a potential method to realize both production and remediation. Maize and peanuts are the main crops planted in As-contaminated areas and easily polluted by As. This study preliminarily demonstrated the feasibility of this intercropping system to safely use and remedy arsenic-contaminated farmland during production.


Asunto(s)
Arsénico , Contaminantes del Suelo , Agricultura/métodos , Arachis , Zea mays , Biodegradación Ambiental , Suelo , Productos Agrícolas , Contaminantes del Suelo/análisis
12.
Polymers (Basel) ; 15(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36771853

RESUMEN

Muscles are capable of modulating the body and adapting to environmental changes with a highly integrated sensing and actuation. Inspired by biological muscles, coiled/twisted fibers are adopted that can convert volume expansion into axial contraction and offer the advantages of flexibility and light weight. However, the sensing-actuation integrated fish line/yarn-based artificial muscles are still barely reported due to the poor actuation-sensing interface with off-the-shelf fibers. We report herein artificial coiled yarn muscles with self-sensing and actuation functions using the commercially available yarns. Via a two-step process, the artificial coiled yarn muscles are proved to obtain enhanced electrical conductivity and durability, which facilitates the long-term application in human-robot interfaces. The resistivity is successfully reduced from 172.39 Ω·cm (first step) to 1.27 Ω·cm (second step). The multimode sense of stretch strain, pressure, and actuation-sensing are analyzed and proved to have good linearity, stability and durability. The muscles could achieve a sensitivity (gauge factor, GF) of the contraction strain perception up to 1.5. We further demonstrate this self-aware artificial coiled yarn muscles could empower non-active objects with actuation and real-time monitoring capabilities without causing damage to the objects. Overall, this work provides a facile and versatile tool in improving the actuation-sensing performances of the artificial coiled yarn muscles and has the potential in building smart and interactive soft actuation systems.

13.
Food Funct ; 14(4): 2149-2161, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752212

RESUMEN

Lifespan longevity has attracted increasing attention with societal development. To counter the effects of aging on longevity, we focused on the natural chemicals of plants. In this study, we investigated the effects of puerarin supplementation on the lifespan of Drosophila melanogaster. Puerarin supplementation significantly extended the lifespan of D. melanogaster at 60 µM and 120 µM by upregulating proteasome subunit beta 5 (prosbeta5) and sirtuin-1 (Sirt1). However, puerarin-induced longevity of male flies (F0 generation) may not be passed on to descendants. Additionally, a puerarin diet for 10 and 25 days did not influence the body weight and food intake of male Canton-S flies. Puerarin significantly improved the climbing ability, starvation resistance, and oxidation resistance of male flies by upregulating the expression of Shaker, catalase (CAT), superoxide dismutase 1 (SOD1), and Methuselah, and downregulating poly [ADP-ribose] polymerase (PARP-1) and major heat shock 70 kDa protein Aa (HSP70). Moreover, 120 µM puerarin supplementation for 25 days significantly increased adenosine 5' triphosphate (ATP) content by increasing adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) levels. Additionally, the puerarin diet for 25 days suppressed male fecundity in male flies by decreasing the levels of Bam and Punt. Mechanistically, puerarin enhanced lysosome-involved autophagy by promoting the expression of lysosome markers [ß-galactosidase and lysosomal associated membrane protein 1 (LAMP1)], and elevating the levels of autophagy-related genes, including autophagy-associated gene 1 (ATG1), ATG5, and ATG8b. However, puerarin decreased the phosphorylation of the target of rapamycin (TOR) protein. In conclusion, puerarin is a promising compound for improving the longevity of D. melanogaster by activating autophagy.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/metabolismo , Longevidad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Autofagia , Proteínas de Choque Térmico/metabolismo , Adenosina
14.
Drug Resist Updat ; 68: 100951, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841134

RESUMEN

AIMS: Microtubule inhibitors are widely used in first line cancer therapy, though drug resistance often develops and causes treatment failure. Colchicine binds to tubulins and inhibits tumor growth, but is not approved for cancer therapy due to systemic toxicity. In this study, we aim to improve the therapeutic index of colchicine through structural modification. METHODS: The methoxyl group of the tropolonic ring in colchicine was replaced with amino groups. The cross-resistance of the derivatives with paclitaxel and vincristine was tested. Antitumor effects of target compounds were tested in vivo in A549 and paclitaxel-resistant A549/T xenografts. The interaction of target compounds with tubulins was measured using biological and chemical methods. RESULTS: Methylamino replacement of the tropolonic methoxyl group of colchicine increases, while demethylation loses, selective tubulin binding affinity, G2/M arrest and antiproliferation activity. Methylaminocolchicine is more potent than paclitaxel and vincristine to inhibit tumor growth in vitro and in vivo without showing cross-resistance to paclitaxel. Methylaminocolchicine binds to tubulins in unique patterns and inhibits P-gp with a stable pharmacokinetic profile. CONCLUSION: Methylanimo replacement of the tropolonic methoxyl group of colchicine increases antitumor activity with improved therapeutic index. Methylaminocolchicine represents a new type of mitotic inhibitor with the ability of overcoming paclitaxel and vincristine resistance.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Paclitaxel/farmacología , Paclitaxel/química , Paclitaxel/uso terapéutico , Colchicina/farmacología , Colchicina/química , Colchicina/metabolismo , Tubulina (Proteína) , Vincristina/farmacología , Vincristina/uso terapéutico , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Antineoplásicos/uso terapéutico
15.
Front Neurol ; 13: 998953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226076

RESUMEN

Background: Transcranial direct current stimulation (tDCS) has been widely studied for treatment of patients with prolonged disorders of consciousness (PDOC). The dorsolateral prefrontal cortex (DLPFC) is a hot target for intervention, but some controversies remain. Purpose: This review aimed to systematically investigate the therapeutic effects of DLPFC-anodal-tDCS for patients with PDOC through a meta-analysis approach. Data sources: Searches for relevant articles available in English were conducted using EMBASE, Medline, Web of Science, EBSCO, and Cochrane Central Register of Controlled Trials from inception until March 26, 2022. Study selection: All randomized parallel or cross-over controlled trials comparing the effect of intervention with active-tDCS and Sham-tDCS on Coma Recovery Scale Revised (CRS-R) score in individuals with PDOC were included. Data extraction: Two authors independently extracted data, assessed the methodological quality, and rated each study. Data synthesis: Ten randomized parallel or cross-over controlled trials were eligible for systematic review, and eight of the studies involving 165 individuals were identified as eligible for meta-analysis. Compared with Sham-tDCS, the use of anode-tDCS over DLPFC improved the CRS-R score (SMD = 0.71; 95% CI: 0.47-0.95, I 2 = 10%). Patients with PDOC classified as MCS and clinically diagnosed as CVA or TBI may benefit from anode-tDCS. Limitations: Failure to evaluate the long-term effects and lack of quantitative analysis of neurological examination are the main limitations for the application of anode-tDCS. Conclusions: Anodal-tDCS over the left DLPFC may be advantageous to the recovery of patients with MCS and clinically diagnosed with CVA or TBI. There is a lack of evidence to support the duration of the disease course will limit the performance of the treatment. Further studies are needed to explore the diversity of stimulation targets and help to improve the mesocircuit model. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=279391, identifier: CRD42022279391.

16.
J Food Biochem ; 46(12): e14457, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36200679

RESUMEN

Hawthorn (HT), a functional food and medicinal herb for centuries in China, has potential preventive and therapeutic effects on atherosclerosis (AS). However, the mechanisms and active ingredients of HT in the prevention and treatment of AS are unclear. This study aimed to reveal active components and mechanism of HT in the prevention and treatment of AS using UHPLC-Q-Exactive Orbitrap MS and network pharmacology. A total of 50 compounds were identified by UHPLC-Q-Exactive Orbitrap MS. Six core targets and six active compounds were obtained by network pharmacology. Apigenin, luteolin, chrysin, quercetin, oleanic acid, and corosolic acid were the active components in the prevention and treatment of AS, and core targets included SRC, HSP90AA1, MAPK3, EGFR, HRAS, and AKT1. The key signaling pathways involved are MAPK, HIF-1, NF-kappa B, PI3K-Akt, TNF, Rap1, Ras, and VEGF signaling pathways. Further molecular docking results indicated that the six active compounds had strong hydrogen bonding ability with the six core targets. On the molecular level, HT may regulate AS by controlling cell survival and proliferation, reducing the levels of enzymes HMG-CoA reductase and lipoprotein lipase and inhibiting inflammatory response. PRACTICAL APPLICATIONS: HT can serve as "medicine-food homology" for dietary supplement and exert potential preventive and therapeutic effects on AS. However, the mechanisms of HT in the prevention and treatment of AS are unclear. This study describes a rapid method of detecting and identifying the components and mechanism of HT based on LC-MS and network pharmacology, which provides a theoretical and scientific support for further application of HT and guidance for the research of other herbal medicines.


Asunto(s)
Aterosclerosis , Crataegus , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Apigenina
17.
Drug Deliv ; 29(1): 2130-2161, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35815678

RESUMEN

Chemotherapy drugs have been used for a long time in the treatment of cancer, but serious side effects are caused by the inability of the drug to be solely delivered to the tumor when treating cancer with chemotherapy. Natural products have attracted more and more attention due to the antitumor effect in multiple ways, abundant resources and less side effects. Therefore, the combination of natural active ingredients and chemotherapy drugs may be an effective antitumor strategy, which can inhibit the growth of tumor and multidrug resistance, reduce side effects of chemotherapy drugs. Nano-drug co-delivery system (NDCDS) can play an important role in the combination of natural active ingredients and chemotherapy drugs. This review provides a comprehensive summary of the research status and application prospect of nano-delivery strategies for the combination of natural active ingredients and chemotherapy drugs, aiming to provide a basis for the development of anti-tumor drugs.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Sistemas de Liberación de Medicamentos/métodos , Humanos , Sistema de Administración de Fármacos con Nanopartículas , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico
18.
J Ethnopharmacol ; 294: 115387, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35580770

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Raphani Semen (Lai Fu-zi in Chinese, RS), the dried seeds of Raphanus sativus L., is a traditional Chinese herbal medicine. RS has long been used for eliminating bloating and digestion, antitussive, expectorant and anti-asthmatic in clinical treatment of traditional Chinese medicine. AIM OF THE STUDY: This review provides a critical and comprehensive summary of traditional uses, phytochemistry, transformation of ingredients and pharmacology of RS based on research data that have been reported, aiming at providing a basis for further study on RS. MATERIALS AND METHODS: The search terms "Raphani Semen", "the seeds of Raphanus sativus L." and "radish seed" were used to obtain the information from electronic databases such as Web of Science, China National Knowledge Infrastructure, PubMed and other web search instruments. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of RS were summarized. RESULTS: RS has been traditionally used to treat food dyspeptic retention, distending pain in the epigastrium and abdomen, constipation, diarrhea and dysentery, panting, and cough with phlegm congestion in the clinical practice. The chemical constituents of RS include glucosinolates and sulfur-containing derivatives, phenylpropanoid sucrosides, small organic acids and derivatives, flavone glycosides, alkaloids, terpenoids, steroids, oligosaccharides and others. Among them, glucosinolates can be transformated to isothiocyanates by plant myrosinase or the intestinal flora, which display a variety of activities, such as anti-tumor, anti-inflammatory, antioxidant, antibacterial, treatment of metabolic diseases, central nervous system protection, anti-osteoporosis. RS has a variety of pharmacological activities, including treatment of metabolic diseases, anti-inflammatory, anti-tumor, antioxidant, antibacterial, antihypertensive, central nervous system protection, anti-osteoporosis, etc. This review will provide useful insight for exploration, further study and precise medication of RS in the future. CONCLUSIONS: According to its traditional uses, phytochemistry, transformation of ingredients and pharmacology, RS is regarded as a promising medical plant with various chemical compounds and numerous pharmacological activities. However, the material bases and mechanisms of traditional effect of RS need further study.


Asunto(s)
Raphanus , Antibacterianos/uso terapéutico , Antioxidantes/farmacología , Etnofarmacología , Glucosinolatos , Medicina Tradicional China , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Semillas
19.
Org Lett ; 24(8): 1668-1672, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35191309

RESUMEN

A green, sustainable, and straightforward method for the synthesis of unsymmetrical oxalamides via photoinduced C-N/C═O bond formation of bromodifluoroacetamide, amine, and H2O through a triple-cleavage process has been developed. In addition, this approach also provides access to the known bioactive compounds, and a feasible reaction mechanism is proposed. Moreover, the advantages of this transformation, including mild reaction conditions, a broad substrate scope, and operational simplicity, make this protocol attractive for further applications.

20.
Ecotoxicol Environ Saf ; 231: 113181, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35026585

RESUMEN

As one of the main environmental pollutants and occupational hazards, nickel has been reported to have mutagenic, carcinogenic, and teratogenic properties, as well as reproductive toxicity. However, how nickel affects human reproduction is still unclear. In this study, the toxicity of nickel on human sperm and the underlying mechanisms were evaluated in vitro. We found that NiCl2 (10, 50, and 250 µM) impaired sperm total motility and progressive motility in a dose- and time-dependent manner. In addition, sperm hyperactivation and the ability of human sperm to penetrate a viscous medium were found to be compromised after nickel exposure. Mechanically, NiCl2 significantly inhibited the basal intracellular Ca2+ signaling. Besides, reactive oxygen species (ROS), superoxide, and malondialdehyde levels were increased in human sperm after exposure to different concentrations of NiCl2. Consistently, eliminating excess ROS by N-acetyl-L-cysteine or tocopherol significantly alleviated nickel-impaired sperm motility. Taken together, these results revealed that nickel could compromise sperm functions by interfering with Ca2+ signaling and inducing excessive oxidative stress. These findings suggest that, in the high and occupational nickel exposure environments, the contribution of nickel toxicity to the males who wish to preserve their fertility is worthy of careful evaluation.


Asunto(s)
Níquel , Motilidad Espermática , Humanos , Masculino , Níquel/toxicidad , Especies Reactivas de Oxígeno , Reproducción , Espermatozoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA