Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(12): 20638-20653, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859441

RESUMEN

Gallium nitride (GaN) nanowire, as a type of wide bandgap nanomaterial, has attracted considerable interest because of its outstanding physicochemical properties and applications in energy storage and photoelectric devices. In this study, we prepared GaN nanowires via a facile chemical vapor deposition method and investigated their nonlinear absorption responses ranging from ultraviolet to near-infrared in the z-scan technology under irradiation by picosecond laser pulses. The experiment revealed that GaN nanowires exhibit remarkable nonlinear absorption characteristics attributed to their wide bandgap and nanostructure, including saturable absorption and reverse saturable absorption. When compared to bulk GaN crystals, the nanowires provide a richer and more potent set of nonlinear optical effects. Furthermore, we conducted an analysis of the corresponding electronic transition processes associated with photon absorption. Under high peak power density laser excitation, two-photon absorption or three-photon absorption dominate, with maximum modulation depths of 73.6%, 74.9%, 63.1% and 64.3% at 266 nm, 355 nm, 532 nm, and 1064 nm, respectively, corresponding to absorption coefficients of 0.22 cm/GW, 0.28 cm/GW, 0.08 cm/GW, and 2.82 ×10-4 cm3/GW2. At lower peak energy densities, GaN nanowires demonstrate rare and excellent saturation absorption characteristics at wavelength of 355 nm due to interband transitions, while saturable absorption is also observed at 532 nm and 1064 nm due to band tail absorption. The modulation depths are 85.2%, 41.9%, and 13.7% for 355 nm, 532 nm, and 1064 nm, corresponding to saturation intensities of 3.39 GW/cm2, 5.58 GW/cm2 and 14.13 GW/cm2. This indicates that GaN nanowires can be utilized as broadband optical limiters and high-performance pulse laser modulating devices, particularly for scarce ultraviolet optical limiters, and saturable absorbers for ultraviolet and visible lasers. Furthermore, our study demonstrates the application potential of wide bandgap nanomaterials in nonlinear optical devices.

2.
Phytomedicine ; 125: 155293, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295658

RESUMEN

BACKGROUND: In China, Shenqi Fuzheng injection (SFI) has been used as an adjuvant therapy to treat all kinds of cancer for many years. A large number of systematic reviews or meta-analyses (SRs/MAs) were published to assess its efficacy and safety in the past few years. However, the quality of SRs/MAs was unclear and did not generate high-quality clinical evidence. OBJECTIVE: We conducted an overview to integrate relevant SRs/MAs published in the past with the aim of providing new clinical evidence for SFI in combination with chemotherapy in the treatment of cancer. OBJECTIVE: We conducted an overview to integrate relevant SRs/MAs published in the past with the aim of providing new clinical evidence for SFI in combination with chemotherapy in the treatment of cancer. METHODS: A comprehensive search of PubMed, Web of Science, Embase, the Cochrane Library, CNKI, VIP, WanFang, and CBM was performed from the database inception to September 30, 2023. SRs/MAs of randomized controlled trials (RCTs) on SFI combined with chemotherapy for cancer were included. Four reviewers screened the literature and extracted relevant information. Five reviewers assessed the quality of reporting, methodological quality, risk of bias, and quality of evidence for SRs/MAs. We used corrected covered area (CCA) to assess the degree of overlap among the RCTs included in SRs/MAs. We performed a descriptive analysis for the results of the included SRs/MAs. RESULTS: A total of 32 SRs/MAs of SFI combined with chemotherapy for cancer were included. We assessed the reporting quality of SRs/MAs using the PRISMA 2020 statement. 1 SR/MA had relatively complete reports, 20 SRs/MAs had some deficiencies in reporting, and 11 SRs/MAs had serious deficiencies in reporting. We assessed the methodological quality of SRs/MAs using the AMSTAR 2 tool. The methodological quality of all SRs/MAs was very low. We assessed the risk of bias for SRs/MAs using the ROBIS tool. The risk of bias was low for 19 SRs/MAs and unclear for 13 SRs/MAs. We assessed the quality of evidence for SRs/MAs using the GRADE evidence quality evaluation system. 50 items were moderate quality, 46 items were low quality, 27 items were very low quality, and 85 items were unclear. SFI combined with chemotherapy played a role in increasing efficacy and decreasing toxicities in all kinds of cancer, including clinical efficacy (except liver cancer), quality of life, immune function (except CD8+), leukopenia, thrombocytopenia, hemoglobinopenia, nausea and vomiting, liver damage, kidney damage, neurotoxicity, alopecia, and diarrhea. CONCLUSION: The overview showed that SFI combined with chemotherapy may improve clinical efficacy (except for liver cancer), quality of life, and immune (except for CD8+) function in all types of cancer, as well as adverse events (AEs) such as leukopenia, thrombocytopenia, etc. Since most of the clinical evidence was low, higher quality clinical trials will be expected to improve the reliability of the above conclusions in the future.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Medicamentos Herbarios Chinos , Leucopenia , Neoplasias Hepáticas , Neoplasias Pulmonares , Trombocitopenia , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico
3.
Opt Lett ; 48(15): 3985-3988, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527099

RESUMEN

In this Letter, we demonstrate and experimentally verify the application of three-core photonic crystal fiber (3C-PCF) for the in-line detection of fully polarized states. We prove the response of 3C-PCF to full-polarization states under multi-core polarization interference through experiments. The sensitivity at 1472 nm is 0.0273 nm/rad, and the linear response is better than 98.9% (the optimal operating wavelength can be designed in the range of 1470 to 1570 nm). With the advantages of an all-fiber integrated system, robustness, and wide wavelength coverage, our design holds great promise for facilitating fiber-optic-integrated polarization meters for optical fiber communication and biomedical diagnostic applications.

4.
Fitoterapia ; 170: 105630, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37536471

RESUMEN

Artemisia anomala S. Moore exerts many pharmacological activities, including the removing of the blood stasis, relieving of the fever and analgesia, reducing the swelling and dampness. In this study, the extraction technology, chemical compositions and anti-inflammatory effect in vitro and mechanism of total flavonoids extract from Artemisia anomala S. Moore were studied. The optimal yield rate of total flavonoids extract was optimized by single factor experiments and response surface method, and the chemical constituents were analyzed by UPLC-QTOF-MS method; and the anti-inflammatory activity of the extract was evaluated with lipopolysaccharide induced RAW 264.7 cells. The highest extraction rate was 2.02% under these conditions of the concentration of ethanol 50%, the ultrasonic extraction time 30 min, and the ratio of solvent volume to material weight 20:1 (ml/g). In addition, the main components of total flavonoid extract were preliminarily identified and deduced based on mass spectrometry information and relevant literatures, and its stronger anti-inflammatory activity was demonstrated by reducing the phagocytosis, the content of nitric oxide and the level of related cytokines (tumor necrosis factor-α, interleukin-10, interleukin-6). Furthermore, it was further revealed that the anti-inflammatory effect of the extract was closely connected with the activation of TLR4-MyD88-NF-κB signalling pathway. This study indicated that the total flavonoids extract from Artemisia anomala S. Moore may be a better candidate anti-inflammatory natural medicine.

5.
iScience ; 25(10): 105245, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36262314

RESUMEN

The ability to accurately and cost-friendly monitor heavy metals in environmental solutions such as drinking or tap water is of great significance to the human health. We report a twisted fiber-based sensing mechanism that can realize highly accurate detection of Cd2+ concentration in water solution. The basic design is a twisted single-core fiber simply coated with a propylene thiourea membrane that can absorb Cd2+. Due to the twisting effect, light in the core can scatter into the cladding, yielding optical coupling and interference. We experimentally prove that both positions and amplitudes of interference dips in the sample transmission spectrum can effectively and linearly response to the change of Cd2+ concentration at the level of 10-11 mol/L. With bimodal calibration, such sensor can realize accurate and real-time monitor in a stable and nontoxic way. These excellent characteristics indicate promising potential in the field of biochemical and integrated optical sensing.

6.
Opt Lett ; 47(20): 5365-5368, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240364

RESUMEN

A multi-parameter dual-core fiber sensor is proposed to realize highly sensitive detection of illumination, temperature, and humidity, separately. Through partial grating etching of a one-side core, the interaction between the core and the external environment is enhanced. Then, combining the Mach-Zehnder effect of the dual core, a higher sensing sensitivity is obtained. Experimental results show the temperature sensitivity is higher than 6.1952 nm/°C. Besides, the humidity and illumination resolution can reach as accurate as 0.041 relative humidity (RH) and 0.025 light units, respectively. To have better multi-parameter sensing and demodulation, the deep learning algorithm of a one-dimensional convolutional neural network (1D-CNN) is used to reach an accuracy of 99.05% with ∼2.00 root mean square error (RMSE). We envision such an excellent multi-parameter sensor can be promising in environmental monitoring and intelligent manufacturing.

7.
J Biomed Inform ; 110: 103542, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32853795

RESUMEN

OBJECTIVE: This study aims at realizing unsupervised term discovery in Chinese electronic health records (EHRs) by using the word segmentation technique. The existing supervised algorithms do not perform satisfactorily in the case of EHRs, as annotated medical data are scarce. We propose an unsupervised segmentation method (GTS) based on the graph partition principle, whose multi-granular segmentation capability can help realize efficient term discovery. METHODS: A sentence is converted to an undirected graph, with the edge weights based on n-gram statistics, and ratio cut is used to split the sentence into words. The graph partition is solved efficiently via dynamic programming, and multi-granularity is realized by setting different partition numbers. A BERT-based discriminator is trained using generated samples to verify the correctness of the word boundaries. The words that are not recorded in existing dictionaries are retained as potential medical terms. RESULTS: We compared the GTS approach with mature segmentation systems for both word segmentation and term discovery. MD students manually segmented Chinese EHRs at fine and coarse granularity levels and reviewed the term discovery results. The proposed unsupervised method outperformed all the competing algorithms in the word segmentation task. In term discovery, GTS outperformed the best baseline by 17 percentage points (a 47% relative percentage of increment) on F1-score. CONCLUSION: In the absence of annotated training data, the graph partition technique can effectively use the corpus statistics and even expert knowledge to realize unsupervised word segmentation of EHRs. Multi-granular segmentation can be used to provide potential medical terms of various lengths with high accuracy.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , China , Humanos , Lenguaje
8.
Opt Express ; 28(14): 21110-21120, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680157

RESUMEN

A helical Yb3+-doped three-core microstructure fiber (YTMF) amplifier is proposed in this paper, so as to solve the problem of generation and transmission of the orbital angular momentum (OAM) beams. The fiber is composed of three Yb3+-doped cores with a regular triangle shape and a longitudinal helical structure. The experimental results show that the 1064nm laser can be amplified due to the fluorescence amplification characteristics of the doped material Yb3+. Furthermore, theoretical analysis indicates the modes in YTMF at 1064nm, which is located in the amplified wavelength, can support nine modes carrying OAM. Therefore, the related experiments were performed and verified that the transmission modes can respectively carry 1, 2, and 3-order OAM at 1064nm in different coupling cases. These excellent properties indicate that the combination of doped materials and helical fiber provide favorable conditions for the generation and amplification of OAM, which provides a basis for the further development of OAM beams in the field of quantum communication and dense space division multiplexing.

9.
Nanotechnology ; 31(3): 035702, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31557749

RESUMEN

The ability of light to carry and deliver orbital angular momentum (OAM) in the form of optical vortices has attracted much interest. Conventional optical vortices are usually generated by bulky or expensive devices, which would sharply decrease the integration of optical communication systems. Here we demonstrate efficient large-area wavelength-thick metasurfaces that have the ability to produce high-quality optical vortexes with arbitrary OAM and to focus the beams into wavelength-scale rings with efficiency as high as 80%. Moreover, we reveal the relationship between size and energy distribution of focal rings (FR) with different OAMs: as the number of OAM increases, the size of the FR is linearly increasing, the peak focusing intensity (FFI) is decreasing in inverse proportional type, while the total energy on the FR remain almost unchanged. Rigorous quantitative analysis about the coupling effect among nanoantennas and the chromatic aberrations of the proposed metasurfaces are further discussed. We envision such highly efficient metasurfaces for spiral focusing will have potential applications in optical tweezers and communications.

10.
Opt Express ; 27(21): 30629-30638, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31684307

RESUMEN

Recent progress in designing optimized microstructured optical fiber spreads an application scenario of optical fiber sensing. Here, we investigate the bending measurement based on a specially designed hollow core photonic crystal fiber (HC-PCF). Numerical simulation indicates that the bending sensitivity is mainly determined by the diameter of the hollow core and also depends on the coupled modes. Experimentally, a direction-independent bending sensor is fabricated by sandwiching a segment of specially designed HC-PCF into two segments of single mode fibers. The bending sensitivity of our device is improved 10 times by increasing the diameter of the hollow core. Bending measurement is validated at two orthogonal planes. The maximum sensitivity up to 2.8 nm/deg is obtained at 14° bending angle. Additionally, a low thermal sensitivity of 2.5 pm/°C is observed from 18°C to 1000°C. The sensor is robust, easy to fabricate and cost effective, which is promising in the field of small-angle bending measurement under a large temperature range.

11.
Opt Lett ; 44(9): 2350-2353, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042220

RESUMEN

In this Letter, we demonstrated an ∞-type multi-functional sensor through splicing double rare-earth-doped balls (REDBs) with a hollow-core microstructure fiber. Utilizing the different thermal expansion and thermo-optic coefficients of silica and rare earth, the interference of REDBs will be more sensitive to temperature. On both ends of the dual-ball, we spliced the anti-resonance fiber (ARF) to satisfy the broad waveband transmission. In addition, the special anti-resonance loss peak of the ARF can make the amplitude change of the signal more obvious. The experiments prove that a multi-functional sensor is capable of detecting versatile parameters, such as the illumination response, liquid concentration, and ambient temperature. In addition, the temperature sensitivity can reach 1 nm/°C, and the illumination response is obvious. We also analyze the concentration of P-Methylthiophenol, a substance harmful to human beings in the environment. Its resolution can reach 3.125E-5 mol/L. These results indicate that the sensor can be used in underground mine detection, environmental monitoring, and so on.

12.
Opt Lett ; 43(20): 5070-5073, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30320821

RESUMEN

Based on the surface plasmon resonance of metal and anti-resonant principles of hole-core microstructure optical fiber (MSF), in this Letter, we demonstrate a MSF microfluidic sensor that combines silver film and hole-core MSF to achieve the sensitive real-time monitoring of refractive indices and components. The large hole core is a common channel for guiding light and flowing measured liquid. Because of the interaction between light and continuous flow measured liquid, the component and refractive indices can be simultaneously monitored by the characteristic absorption wavelength and the surface plasmon resonant peak position, respectively. These results indicate that the MSF microfluidic sensor is an ideal multi-parameter measurement optical sensor.

13.
Am J Cancer Res ; 6(6): 1441-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27429856

RESUMEN

Breast cancer metastasis suppressor 1 (BRMS1) is a specific tumor metastasis suppressor implicated in the regulation of chromatin modification and gene transcription. However, the molecular mechanism of BRMS1 remains to be elucidated. Here, we report that DBC1 (deleted in breast cancer 1), is a novel interacting protein of BRMS1. The imperfect leucine zipper motifs of BRMS1 and the N-terminal domain of DBC1 are required for the interaction. DBC1 is identified as an important negative regulator of SIRT1's activity and genotoxic stress response. We demonstrated that BRMS1 is able to interrupt endogenous DBC1-SIRT1 association. Consistently, SIRT1-dependent p53 acetylation under genotoxic stress is also affected by BRMS1. Overall, our results identify BRMS1 as a novel regulator of DBC1-SIRT1 complex and SIRT1-dependent p53 deacetylation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...