Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 128(17): 3273-3284, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38635947

RESUMEN

Herein, we report a computation study based on the density functional theory calculations to understand the mechanism and ligand effect of the base-stabilized dialumenes toward dihydrogen activation. Among all of the examined modes of dihydrogen activation using the base-stabilized dialumene, we found that the concerted 1,2-hydrogenation of the Al═Al double bond is kinetically more preferable. The concerted 1,2-hydrogenation of the Al═Al double bond adopts an electron-transfer model with certain asynchrony. That is, the initial electron donation from the H-H σ bonding orbital to the empty 3p orbital of the Al1 center is followed by the backdonation from the lone pair electron of the Al2 center to the H-H σ antibonding orbital. Combined with the energy decomposition analysis on the transition states of the concerted 1,2-hydrogenation of the Al═Al double bond and the topographic steric mapping analysis on the free dialumenes, we ascribe the higher reactivity of the aryl-substituted dialumene over the silyl-substituted analogue in dihydrogen activation to the stronger electron-withdrawing effect of the aryl group, which not only increases the flexibility of the Al═Al double bond but also enhances the Lewis acidity of the Al═Al core. Consequently, the aryl-substituted dialumene fragment suffers less geometric deformation, and the orbital interactions between the dialumene and dihydrogen moieties are more attractive during the 1,2-hydrogenation process. Moreover, our calculations also predict that the Al═Al double bond has a good tolerance with the stronger electron-withdrawing group (-CF3) and the weaker σ-donating N-heterocyclic carbene (NHC) analogue (e.g., triazol carbene and NHSi). The reactivity of the dialumene in dihydrogen activation can be further improved by introducing these groups as the supporting ligand and the stabilizing base on the Al═Al core, respectively.

2.
Neuron ; 111(20): 3270-3287.e8, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37557180

RESUMEN

The expression of defensive responses to alerting sensory cues requires both general arousal and a specific arousal state associated with defensive emotions. However, it remains unclear whether these two forms of arousal can be regulated by common brain regions. We discovered that the medial sector of the auditory thalamus (ATm) in mice is a thalamic hub controlling both general and defensive arousal. The spontaneous activity of VGluT2-expressing ATm (ATmVGluT2+) neurons was correlated with and causally contributed to wakefulness. In sleeping mice, sustained ATmVGluT2+ population responses were predictive of sensory-induced arousal, the likelihood of which was markedly decreased by inhibiting ATmVGluT2+ neurons or multiple downstream pathways. In awake mice, ATmVGluT2+ activation led to heightened arousal accompanied by excessive anxiety and avoidance behavior. Notably, blocking their neurotransmission abolished alerting stimuli-induced defensive behaviors. These findings may shed light on the comorbidity of sleep disturbances and abnormal sensory sensitivity in specific brain disorders.


Asunto(s)
Nivel de Alerta , Tálamo , Ratones , Animales , Nivel de Alerta/fisiología , Tálamo/fisiología , Vigilia/fisiología , Neuronas/fisiología , Transmisión Sináptica
3.
Front Plant Sci ; 13: 1016475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388553

RESUMEN

Camellia fruit is a woody edible oil source with a recalcitrant pericarp, which increases processing costs. However, the relevance of pericarp thickness variations in Camellia species remains unclear. Therefore, this study aimed to identify pericarp differences at the metabolic and transcription levels between thick-pericarp Camellia drupifera BG and thin-pericarp Camellia oleifera SG. Forty differentially accumulated metabolites were screened through non-targeted UHPLC-Q-TOF MS-based metabolite profiling. S-lignin was prominently upregulated in BG compared with SG, contributing to the thick pericarp of BG. KEGG enrichment and coexpression network analysis showed 29 differentially expressed genes associated with the lignin biosynthetic pathway, including 21 genes encoding catalysts and 8 encoding transcription factors. Nine upregulated genes encoding catalysts potentially led to S-lignin accumulation in BG pericarp, and transcription factors NAC and MYB were possibly involved in major transcriptional regulatory mechanisms. Conventional growth-related factors WRKYs and AP2/ERFs were positively associated while pathogenesis-related proteins MLP328 and NCS2 were negatively associated with S-lignin content. Thus, Camellia balances growth and defense possibly by altering lignin biosynthesis. The results of this study may guide the genetic modifications of C. drupifera to optimize its growth-defense balance and improve seed accessibility.

4.
J Oncol ; 2022: 3842547, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656341

RESUMEN

Ubiquitin-like PHD and ring finger domain protein 1 (UHRF1) are members of the multifunctional UHRF family, which can participate in DNA methylation change and histone posttranslational change through particular domains and participate in the event and development of tumors. The purpose of this study was to decide the molecular traits and potential medicine-based importance of UHRF1 that helped settle methylated immune infiltration in generalized cancer by carefully studying the relationship between UHRF1 expression and a variety of tumors and to further check for truth the functional role of UHRF1 in kidney-related cancer. A comprehensive analysis of UHRF1 in 33 cancers was performed based on TCGA database. This research involves analysis of mRNA expression profiles, prognostic value, immune infiltration, immune neoantigens, TMB, microsatellite instability, DNA methylation, and gene set enrichment analysis (GSEA). Both immune infiltration and DNA methylation were used to evaluate the importance and method of UHRF1 in renal cancer. The results showed that tumor tissue had higher expression level of UHRF1 than usual tissue. The high expression level of UHRF1 is related to the survival rate of renal cancer. UHRF1 expression was associated with tumor mutation load and microsatellite instability in different cancer types, and enrichment analysis identified terminology and pathways associated with UHRF1. This study showed that UHRF1 plays an important role in the group of objects and development of 33 tumors. UHRF1 may serve as a biomarker of immune infiltration and poor outlook of cancer.

5.
J Immunol Res ; 2022: 1249290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528617

RESUMEN

Background: Gastric cancer is one of the most common malignant tumors, and it ranks third in global cancer-related mortality. This research was aimed at identifying new targeted treatments for gastric adenocarcinoma by constructing a ferroptosis-related lncRNA prognostic feature model. Methods: The gene expression profile and clinical data of gastric adenocarcinoma patients were downloaded from TCGA database. FerrDb database was used to determine the expression of iron death-related genes. We used R software to clean the TCAG gastric adenocarcinoma gene expression cohort and screen iron death-related differential genes and lncRNAs. The potential prognostic markers and immune infiltration characteristics were determined by constructing prognostic model and multivariate validation of lncRNA related to ferroptosis prognosis. Finally, the characteristics of immune infiltration were determined by immune correlation analysis. Results: We identified 26 ferroptosis-related lncRNAs with independent prognostic value. The Kaplan-Meier analysis identified high-risk lncRNAs associated with poor prognosis of STAD. The risk scoring model constructed by AC115619.1, AC005165.1, LINC01614, and AC002451.1 was better than traditional clinicopathological features. The 1-, 3-, and 5-year survival rates of STAD patients were predicted by the nomogram. GSEA reveals the oxidative respiration and tumor-related pathways in different risk groups. Immune analysis found significant differences in the expression of immune checkpoint-related genes TNFSF9, TNFSF4, and PDCD1LG2 between the two groups of patients. Meanwhile, there were significant differences in APC co stimulation, CCR, and checkpoint between the two groups. Conclusion: Based on the prognostic characteristics of ferroptosis-related lncRNAs, we identified the potential ferroptosis-related lncRNAs and immune infiltration characteristics in gastric adenocarcinoma, which will help provide new targeted treatments for gastric adenocarcinoma.


Asunto(s)
Adenocarcinoma , Ferroptosis , ARN Largo no Codificante , Neoplasias Gástricas , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Ferroptosis/genética , Humanos , Hierro , Ligando OX40 , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética
6.
Comput Math Methods Med ; 2022: 6971131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37671388

RESUMEN

Objective: The ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is a protein coding gene which is associated with colorectal cancer and other diseases. Therefore, the present study was aimed at investigating the effect and mechanism of UHRF1 protein on invasion and metastasis in human renal carcinoma cells. Methods: After UHRF1 was interfered with or overexpressed in renal carcinoma cell lines A498 and 769-P, the relative mRNA and protein level of UHRF1 was detected by RT-qPCR and immunofluorescence. The colony formation assay and MTT were performed to observe the proliferation and cell viability in each group. In addition, the invasion and metastasis of the cells in each group were detected by Transwell and wound healing assay. Finally, Western blot was utilized to measure protein expression of MMP-2 and MMP-9 and the level of protein in the Wnt/ß-catenin signaling pathway. Results: The cell ability, proliferation, invasion, and metastasis in A498 and 769-P cells were inhibited after interfering with UHRF1. In addition, the expression of MMP-2, MMP-9, c-myc, and ß-catenin was significantly decreased, while the expression of GSK-3ß was significantly increased. However, contrasting results were demonstrated when UHRF1 was overexpressed. Conclusions: Interference with the expression of UHRF1 was able to inhibit the invasion and metastasis of human renal carcinoma cell lines A498 and 769-P, which may be related to mediating the Wnt/ß-catenin signaling pathway and regulating the expression of MMP-2 and MMP-9.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Ubiquitina , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Glucógeno Sintasa Quinasa 3 beta , Dominios RING Finger , Proteínas Potenciadoras de Unión a CCAAT , Ubiquitina-Proteína Ligasas
7.
J Healthc Eng ; 2021: 9971325, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447527

RESUMEN

Lung cancer is one of the most malignant tumors. If it can be detected early and treated actively, it can effectively improve a patient's survival rate. Therefore, early diagnosis of lung cancer is very important. Early-stage lung cancer usually appears as a solitary lung nodule on medical imaging. It usually appears as a round or nearly round dense shadow in the chest radiograph. It is difficult to distinguish lung nodules and lung soft tissues with the naked eye. Therefore, this article proposes a deep learning-based artificial intelligence chest CT lung nodule detection performance evaluation study, aiming to evaluate the value of chest CT imaging technology in the detection of noncalcified nodules and provide help for the detection and treatment of lung cancer. In this article, the Lung Medical Imaging Database Consortium (LIDC) was selected to obtain 536 usable cases based on inclusion criteria; 80 cases were selected for examination, artificial intelligence software, radiologists, and thoracic imaging specialists. Using 80 pulmonary nodules detection in each case, the pathological type of pulmonary nodules, nonlime tuberculous test results, detection sensitivity, false negative rate, false positive rate, and CT findings were individually analyzed, and the detection efficiency software of artificial intelligence was evaluated. Experiments have proved that the sensitivity of artificial intelligence software to detect noncalcified nodules in the pleural, peripheral, central, and hilar areas is higher than that of radiologists, indicating that the method proposed in this article has achieved good detection results. It has a better nodule detection sensitivity than a radiologist, reducing the complexity of the detection process.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Lesiones Precancerosas , Inteligencia Artificial , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Neoplasias Pulmonares/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X
8.
Physiol Plant ; 173(3): 1136-1146, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34302699

RESUMEN

Organ abscission in plants requires the hydrolysis of cell wall components, mainly including celluloses, pectins, and xyloglucans. However, how the genes that encode those hydrolytic enzymes are regulated and their function in abscission remains unclear. Previously we revealed that two cellulase genes LcCEL2/8 and two polygalacturonase genes LcPG1/2 were responsible for the degradation of celluloses and pectins, respectively, during fruitlet abscission in litchi. Here, we further identified three xyloglucan endotransglucosylase/hydrolase genes (LcXTH4, LcXTH7, LcXTH19) that are also involved in this process. Nineteen LcXTHs, named LcXTH1-19, were identified in the litchi genome. Transcriptome data and qRT-PCR confirmed that LcXTH4/7/19 were significantly induced at the abscission zone (AZ) during fruitlet abscission in litchi. The GUS reporter driven by each promoter of LcXTH4/7/19 was specifically expressed at the floral abscission zone of Arabidopsis, and importantly ectopic expression of LcXTH19 in Arabidopsis resulted in precocious floral organ abscission. Moreover, electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter analysis showed that the expression of LcXTH4/7/19 could be directly activated by two ETHYLENE INSENSITIVE 3-like (EIL) transcription factors LcEIL2/3. Collectively, we propose that LcXTH4/7/19 are involved in fruitlet abscission, and LcEIL2/3-mediated transcriptional regulation of diverse cell wall hydrolytic genes is responsible for this process in litchi.


Asunto(s)
Litchi , Glicosiltransferasas/genética , Hidrolasas , Litchi/genética , Proteínas de Plantas/genética
9.
Hortic Res ; 8(1): 105, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33931615

RESUMEN

Abscission in plants is tightly controlled by multiple phytohormones and the expression of various genes. However, whether the plant hormone brassinosteroids (BRs) are involved in this process is largely unknown. Here, we found that exogenous application of BRs reduced the ethylene-induced fruitlet abscission of litchi due to lower ethylene (ET) production and suppressed the expression of the ethylene biosynthetic genes LcACS1/4 and LcACO2/3 in the fruitlet abscission zone (FAZ). Two genes that encode the BR core signaling components brassinazole resistant (BZR) proteins, namely, LcBZR1 and LcBZR2, were characterized. LcBZR1/2 were localized to the nucleus and acted as transcription repressors. Interestingly, the LcBZR1/2 transcript levels were not changed during ET-induced fruitlet abscission, while their expression levels were significantly increased after BR application. Moreover, gel shift and transient expression assays indicated that LcBZR1/2 could suppress the transcription of LcACS1/4 and LcACO2/3 by specifically binding to their promoters. Importantly, ectopic expression of LcBZR1/2 in Arabidopsis significantly delayed floral organ abscission and suppressed ethylene biosynthesis. Collectively, our results suggest that BRs suppress ET-induced fruitlet abscission through LcBZR1/2-controlled expression of genes related to ethylene biosynthesis in litchi. In addition, similar results were observed in the Arabidopsis gain-of-function mutant bzr1-1D, which showed delayed floral organ abscission in parallel with lower expression of ACS/ACO genes and reduced ethylene production, suggesting that the mechanism of BZR-controlled organ abscission via regulation of ethylene biosynthesis might be conserved in Arabidopsis.

10.
J Int Med Res ; 49(2): 300060520972658, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33530774

RESUMEN

BACKGROUND: In December 2019, an outbreak of coronavirus disease 2019 (COVID-19) began in Wuhan, China, and led to a global epidemic. We aimed to compare the clinical and serological features of COVID-19 patients with positive and negative reverse transcriptase polymerase chain reaction (RT-PCR) tests. METHODS: This was a retrospective cohort study conducted from 9 February to 4 April 2020. COVID-19 patients at Leishenshan Hospital in Wuhan, China (125 total cases; 87 RT-PCR positive and 38 RT-PCR negative) were included. COVID-19 serology was assessed by colloidal gold assay. All cases were analyzed for demographic, clinical, and serological features. RESULTS: There were no significant differences in most demographic features, clinical symptoms, complications or treatments of RT-PCR positive and negative COVID-19 patients. Serum IgM/IgG was positive in 82 (94%) and 33 (87%) RT-PCR positive and negative cases, respectively. IgM was detectable as early as 3 days after symptom onset and was undetectable 60 days after symptom onset. By contrast, IgG could be detected only 10 days after symptom onset and reached its peak 60 days after symptom onset. CONCLUSIONS: Serological tests performed during the appropriate time window of disease progression could be valuable auxiliary methods to RT-PCR in COVID-19 patients.


Asunto(s)
COVID-19/patología , Adulto , COVID-19/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
11.
Mol Brain ; 13(1): 162, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228716

RESUMEN

Sirtuin 1 (SIRT1), is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase and a candidate gene for depression. Nicotinamide (NAM), a form of vitamin B3, is reported as a potential inhibitor of SIRT1. Our previous study found that the 24-h-restraint stress could induce long-term depressive-like phenotypes in mice. These mice displayed increased SIRT1 activity. Here, we studied whether NAM was capable of attenuating depressive behaviors through inhibiting SIRT1 activity. Surprisingly, the application of NAM significantly reversed the depressive behaviors but increased SIRT1 activity further. In contrast, the level of adenosine triphosphate (ATP) was reduced in the restraint model for depression, and recovered by the administration of NAM. Furthermore, the Sirt1flox/flox; Nestin-Cre mice exhibited antidepressant behaviors and increased ATP levels. These data suggest that ATP plays an important role in depression pathogenesis, and NAM could be a potential treatment method for depression by regulating ATP independent of SIRT1 activity.


Asunto(s)
Conducta Animal , Depresión/tratamiento farmacológico , Depresión/metabolismo , Niacinamida/uso terapéutico , Sirtuina 1/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Integrasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nestina/metabolismo , Niacinamida/farmacología
12.
Inorg Chem ; 59(14): 9667-9682, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32585105

RESUMEN

In this work, a density functional theory (DFT) study was performed to identify the catalytically active species in the copper-catalyzed three-component reductive hydroxymethylation of styrene with CO2 and hydrosilane. The calculations reveal that the dimeric copper(I) hydride species, formed in a mixture of the bisphosphine ligand, Cu(OAc)2, and hydrosilane, probably acts as the catalyst precursor. In the beginning, this species is catalytically competent to trigger the hydrocupration of styrene, along with the formation of the dimeric copper(I) alkyl intermediate. Subsequently, CO2 insertion into the dimeric copper(I) alkyl intermediate occurs, which is accompanied by the cleavage of the Cu-Cu bond and the generation of the monomeric copper(I) carboxylate intermediate. In the end, the sequential reduction of the monomeric copper(I) carboxylate intermediate with the hydrosilane produces the monomeric copper(I) hydride species as the actual catalyst and turns on the catalytic cycle. On the other hand, the monomeric copper(II) hydride species, yielded as the kinetic product in the initial reaction of the bisphosphine ligand, Cu(OAc)2, and hydrosilane, is also reactive for the hydrocupration of styrene. However, the resulting monomeric copper(II) alkyl intermediate is found to be the catalyst resting state, because of the much higher energy barrier demanded for the subsequent nucleophilic attack toward CO2. On the basis of the results of an activation-strain model (ASM) analysis and charge decomposition analysis (CDA), the low activity of the monomeric copper(II) alkyl intermediate can be ascribed to the more crowded environment around the central copper(II) ion and the weaker nucleophilicity of the alkyl moiety. Furthermore, all of the possible CuH species generated in the system are competent to promote the two-component hydrosilylation of CO2 with hydrosilane, which is an inevitable side reaction along with the reductive hydroxymethylation of styrene with CO2 and hydrosilane.

13.
J Exp Bot ; 71(14): 4069-4082, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32227110

RESUMEN

Abscission is triggered by multiple environmental and developmental cues, including endogenous plant hormones. KNOTTED-LIKE HOMEOBOX (KNOX) transcription factors (TFs) play an important role in controlling abscission in plants. However, the underlying molecular mechanism of KNOX TFs in abscission is largely unknown. Here, we identified LcKNAT1, a KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1)-like protein from litchi, which regulates abscission by modulating ethylene biosynthesis. LcKNAT1 is expressed in the fruit abscission zone and its expression decreases during fruitlet abscission. Furthermore, the expression of the ethylene biosynthetic genes LcACS1, LcACS7, and LcACO2 increases in the fruit abscission zone, in parallel with the emission of ethylene in fruitlets. In vitro and in vivo assays revealed that LcKNAT1 inhibits the expression of LcACS/ACO genes by directly binding to their promoters. Moreover, ectopic expression of LcKNAT1 represses flower abscission in tomatoes. Transgenic plants expressing LcKNAT1 also showed consistently decreased expression of ACS/ACO genes. Collectively, these results indicate that LcKNAT1 represses abscission via the negative regulation of ethylene biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Litchi , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Etilenos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Litchi/genética , Litchi/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
J Exp Bot ; 70(19): 5189-5203, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31173099

RESUMEN

Cellulases play important roles in the shedding of plant organs; however, little is yet known about the functions of cellulase genes during the process of organ abscission. Abnormal fruitlet abscission is a serious problem in the production of litchi (Litchi chinensis), an economically important fruit widely grown in South Asia. In this study, two abscission-accelerating treatments (carbohydrate stress and application of ethephon) were evaluated in litchi fruitlets. Cell wall degradation and cell separation were clearly observed in the abscission zones of treated fruitlets, consistent with enhanced cellulase activities and reduced cellulose contents. The expression of two cellulase genes (LcCEL2 and LcCEL8) was strongly associated with abscission. Floral organs of transgenic Arabidopsis overexpressing LcCEL2 or LcCEL8 showed remarkably precocious abscission. Electrophoretic mobility shift assays and transient expression experiments demonstrated that a novel homeodomain-leucine zipper transcription factor, LcHB2, could directly bind to and activate HD-binding cis-elements in the LcCEL2 and LcCEL8 promoters. Our results provide new information regarding the transcriptional regulation of the cellulase genes responsible for cell wall degradation and cell separation during plant organ shedding, and raise the possibility of future manipulation of litchi fruitlet abscission by modulation of the activities of these two cellulases.


Asunto(s)
Celulasas/genética , Frutas/crecimiento & desarrollo , Litchi/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Celulasas/metabolismo , Frutas/genética , Litchi/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
16.
Tree Physiol ; 39(9): 1600-1613, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31222320

RESUMEN

Abnormal fruitlet abscission is a limiting factor in the production of litchi, an economically important fruit in Southern Asia. Both ethylene and abscisic acid (ABA) induce organ abscission in plants. Although ACS/ACO and NCED genes are known to encode key enzymes required for ethylene and ABA biosynthesis, respectively, the transcriptional regulation of these genes is unclear in the process of plant organ shedding. Here, two polygalacturonase (PG) genes (LcPG1 and LcPG2) and two novel homeodomain-leucine zipper I transcription factors genes (LcHB2 and LcHB3) were identified as key genes associated with the fruitlet abscission in litchi. The expression of LcPG1 and LcPG2 was strongly associated with litchi fruitlet abscission, consistent with enhanced PG activity and reduced homogalacturonan content in fruitlet abscission zones (FAZs). The promoter activities of LcPG1/2 were enhanced by ethephon and ABA. In addition, the production of ethylene and ABA in fruitlets was significantly increased during fruit abscission. Consistently, expression of five genes (LcACO2, LcACO3, LcACS1, LcACS4 and LcACS7) related to ethylene biosynthesis and one gene (LcNCED3) related to ABA biosynthesis in FAZs were activated. Further, electrophoretic mobility shift assays and transient expression experiments demonstrated that both LcHB2 and LcHB3 could directly bind to the promoter of LcACO2/3, LcACS1/4/7 and LcNCED3 genes and activate their expression. Collectively, we propose that LcHB2/3 are involved in the litchi fruitlet abscission through positive regulation of ethylene and ABA biosynthesis.


Asunto(s)
Litchi , Ácido Abscísico , Asia , Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción
17.
PeerJ ; 7: e6677, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30976465

RESUMEN

Auxin response factors (ARFs) play fundamental roles in modulating various biological processes including fruit development and abscission via regulating the expression of auxin response genes. Currently, little is known about roles of ARFs in litchi (Litchi chinensis Sonn.), an economically important subtropical fruit tree whose production is suffering from fruit abscission. In this study, a genome-wide analysis of ARFs was conducted for litchi, 39 ARF genes (LcARFs) were identified. Conserved domain analysis showed that all the LcARFs identified have the signature B3 DNA-binding (B3) and ARF (Aux_rep) domains, with only 23 members having the dimerization domain (Aux_IAA). The number of exons in LcARF genes ranges from 2 to 16, suggesting a large variation for the gene structure of LcARFs. Phylogenetic analysis showed that the 39 LcARFs could be divided into three main groups: class I, II, and III. In total, 23 LcARFs were found to be potential targets of small RNAs, with three conserved and one novel miRNA-ARF (miRN43-ARF9) regulatory pathways discovered in litchi. Expression patterns were used to evaluate candidate LcARFs involved in various developmental processes, especially in flower formation and organ abscission. The results revealed that most ARF genes likely acted as repressors in litchi fruit abscission, that is, ARF2D/2E, 7A/7B, 9A/9B, 16A/16B, while a few LcARFs, such as LcARF5A/B, might be positively involved in this process. These findings provide useful information and resources for further studies on the roles of ARF genes in litchi growth and development, especially in the process of fruit abscission.

18.
Front Plant Sci ; 8: 639, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28496451

RESUMEN

Modifications to histones, including acetylation and methylation processes, play crucial roles in the regulation of gene expression in plant development as well as in stress responses. However, limited information on the enzymes catalyzing histone acetylation and methylation in non-model plants is currently available. In this study, several histone modifier (HM) types, including six histone acetyltransferases (HATs), 11 histone deacetylases (HDACs), 48 histone methyltransferases (HMTs), and 22 histone demethylases (HDMs), are identified in litchi (Litchi chinensis Sonn. cv. Feizixiao) based on similarities in their sequences to homologs in Arabidopsis (A. thaliana), tomato (Solanum lycopersicum), and rice (Oryza sativa). Phylogenetic analyses reveal that HM enzymes can be grouped into four HAT, two HDAC, two HMT, and two HDM subfamilies, respectively, while further expression profile analyses demonstrate that 17 HMs were significantly altered during fruit abscission in two field treatments. Analyses reveal that these genes exhibit four distinct patterns of expression in response to fruit abscission, while an in vitro assay was used to confirm the HDAC activity of LcHDA2, LcHDA6, and LcSRT2. Our findings are the first in-depth analysis of HMs in the litchi genome, and imply that some are likely to play important roles in fruit abscission in this commercially important plant.

19.
Int J Cardiovasc Imaging ; 33(10): 1599-1606, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28396960

RESUMEN

Increased B-type natriuretic peptide (BNP) level has been suggested to improve clinical predictions of coronary events and all-cause mortality. We aimed to analyze the relationship between BNP levels and coronary plaque subtypes as detected by coronary computed tomography angiography (CCTA). 402 subjects undergoing CCTA were enrolled. The relationship between increased levels of BNP and plaque subtypes was tested using multivariable linear and logistic regression analysis. Plaques were categorized into subtypes of calcified, mixed and non-calcified. Coronary plaque was observed in 93 of 402 individuals. The participants were divided into three groups according to their serum BNP levels. Compared to those with low BNP level, subgroup with high BNP level had increased prevalence of all plaque types and mixed calcified arterial plaque (MCAP). Multivariable logistic regression analysis suggested increased BNP level predicted the MCAP. Multivariable logistic regression analysis between the presence of ≥2 plaques and BNP indicated that, subgroup with high BNP level was more likely to have MCAP than low BNP level. Our study suggests that increased BNP level is associated with MCAP detected by CCTA. Increased BNP level provides additional information about coronary artery disease in patients with stable chest pain detected by CCTA.


Asunto(s)
Angina Estable/sangre , Angina Estable/diagnóstico por imagen , Angiografía por Tomografía Computarizada , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Tomografía Computarizada Multidetector , Péptido Natriurético Encefálico/sangre , Placa Aterosclerótica , Angina Estable/epidemiología , Biomarcadores/sangre , Distribución de Chi-Cuadrado , China/epidemiología , Enfermedad de la Arteria Coronaria/epidemiología , Estudios Transversales , Método Doble Ciego , Femenino , Humanos , Modelos Lineales , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Oportunidad Relativa , Valor Predictivo de las Pruebas , Prevalencia , Pronóstico , Factores de Riesgo
20.
Sci Rep ; 6: 37135, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27845425

RESUMEN

Unexpected abscission of flowers or fruits is a major limiting factor for crop productivity. Key genes controlling abscission in plants, especially in popular fruit trees, are largely unknown. Here we identified a litchi (Litchi chinensis Sonn.) IDA-like (INFLORESCENCE DEFICIENT IN ABSCISSION-like) gene LcIDL1 as a potential key regulator of abscission. LcIDL1 encodes a peptide that shows the closest homology to Arabidopsis IDA, and is localized in cell membrane and cytoplasm. Real-time PCR analysis showed that the expression level of LcIDL1 accumulated gradually following flower abscission, and it was obviously induced by fruit abscission-promoting treatments. Transgenic plants expressing LcIDL1 in Arabidopsis revealed a role of LcIDL1 similar to IDA in promoting floral organ abscission. Moreover, ectopic expression of LcIDL1 in Arabidopsis activated the expression of abscission-related genes. Taken together, our findings provide evidence that LcIDL1 may act as a key regulator in control of abscission.


Asunto(s)
Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Litchi , Proteínas de la Membrana , Proteínas de Plantas , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Litchi/genética , Litchi/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...