Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934557

RESUMEN

BACKGROUND: Betel nut chewing is a significant risk factor for oral cancer due to arecoline, its primary active component. Resveratrol, a non-flavonoid polyphenol, possesses anti-cancer properties. It has been shown to inhibit arecoline-induced oral malignant cells in preliminary experiments but the underlying mechanism remains unclear. This research therefore aimed to explore the potential therapeutic targets of resveratrol in treating arecoline-induced oral cancer. METHODS: Data mining identified common targets and hub targets of resveratrol in arecoline-induced oral cancer. Gene set variation analysis (GSVA) was used to score and validate the expression and clinical significance of these hub targets in head and neck cancer (HNC) tissues. Molecular docking analysis was conducted on the hub targets. The effect of resveratrol intervention on hub targets was verified by experiments. RESULTS: Sixty-one common targets and 15 hub targets were identified. Hub targets were highly expressed in HNC and were associated with unfavorable prognoses. They played a role in HNC metastasis, epithelial-mesenchymal transition, and invasion. Their expression also affected immune cell infiltration and correlated negatively with sensitivity to chemotherapeutic agents such as bleomycin and docetaxel. Experiments demonstrated that resveratrol down-regulated the expression of the hub targets, inhibited their proliferation and invasion, and induced apoptosis. CONCLUSION: Resveratrol inhibits the arecoline-induced malignant phenotype of oral epithelial cells by regulating the expression of some target genes, suggesting that resveratrol may be used not only as an adjuvant treatment for oral cancer, but also as an adjuvant for oral cancer prevention due to its low toxicity and high efficacy. © 2024 Society of Chemical Industry.

2.
J Histochem Cytochem ; 72(6): 363-371, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38804681

RESUMEN

Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck. Its pathogenesis is complicated and needs further investigation. The aim of this study was to investigate the expression and clinical significance of WWP1 in NPC. Bioinformatics approaches were used to evaluate the expression and functions of WWP1 in NPC. WWP1 protein expression was then detected by immunohistochemistry on a tissue microarray in an NPC cohort and its association with clinical features and prognosis was determined. In addition, WWP1 expression was knocked down in NPC cells using RNA interference, and their colony formation and invasion abilities were assessed. A total of 25 genes closely related to WWP1, which may be enriched in different pathways, were filtered out. WWP1 expression was significantly higher in NPC cells than in normal controls. High WWP1 expression was correlated with lymph node metastasis, tumor recurrence, clinical stage and poor prognosis. Knockdown of WWP1 resulted in attenuated proliferation and invasion of NPC cells. The results suggest that WWP1 may serve as a novel biomarker and prognostic factor for NPC and a potential therapeutic target worthy of further investigation.


Asunto(s)
Inmunohistoquímica , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Ubiquitina-Proteína Ligasas , Humanos , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/diagnóstico , Línea Celular Tumoral , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Adulto , Invasividad Neoplásica , Carcinoma/patología , Carcinoma/metabolismo , Carcinoma/genética , Carcinoma/diagnóstico , Metástasis Linfática , Regulación Neoplásica de la Expresión Génica , Relevancia Clínica
3.
Plant Direct ; 8(2): e564, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38312996

RESUMEN

Barley is one of the world's earliest domesticated crops, which is widely used for beer production, animal feeding, and health care. Barley seed germination, particularly in increasingly saline soils, is key to ensure the safety of crop production. However, the mechanism of salt-affected seed germination in barley remains elusive. Here, two different colored barley varieties were used to independently study the regulation mechanism of salt tolerance during barley seed germination. High salinity delays barley seed germination by slowing down starch mobilization efficiency in seeds. The starch plate test revealed that salinity had a significant inhibitory effect on α-amylase activity in barley seeds. Further, NaCl treatment down-regulated the expression of Amy1, Amy2 and Amy3 genes in germinated seeds, thereby inhibiting α-amylase activity. In addition, the result of embryogenic culture system in vitro showed that the shoot elongation of barley was significantly inhibited by salt stress. These findings indicate that it is a feasible idea to study the regulation mechanism of salinity on barley seed germination and embryo growth from the aspect of starch-related source-sink communication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...