Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Phytomedicine ; 132: 155658, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38981149

RESUMEN

BACKGROUND: Alcohol-related liver damage is the most prevalent chronic liver disease, which creates a heavy public health burden worldwide. The leaves of Ampelopsis grossedentata have been considered a popular tea and traditional herbal medicine in China for more than one thousand years, and possess anti-inflammatory, antioxidative, hepatoprotective, and antiviral activities. PURPOSE: We explored the protective effects of Ampelopsis grossedentata extract (AGE) against chronic alcohol-induced hepatic injury (alcoholic liver disease, ALD), aiming to elucidate its underlying mechanisms. METHODS: Firstly, UPLC-Q/TOF-MS analysis and network pharmacology were used to identify the constituents and elucidate the potential mechanisms of AGE against ALD. Secondly, C57BL/6 mice were pair-fed the Lieber-DeCarli diet containing either isocaloric maltodextrin or ethanol, AGE (150 and 300 mg/kg/d) and silymarin (200 mg/kg) were administered to chronic ethanol-fed mice for 7 weeks to evaluate the hepatoprotective effects. Serum biochemical parameters were determined, hepatic and ileum sections were used for histologic examination, and levels of inflammatory cytokines and oxidative stress in the liver were examined. The potential molecular mechanisms of AGE in improving ALD were demonstrated by RNA-seq, Western blotting analysis, and immunofluorescence staining. RESULTS: Ten main constituents of AGE were identified using UPLC-Q/TOF-MS and 274 potential ALD-related targets were identified. The enriched KEGG pathways included Toll-like receptor signaling pathway, NF-κB signaling pathway, and necroptosis. Moreover, in vivo experimental studies demonstrated that AGE significantly reduced serum aminotransferase levels and improved pathological abnormalities after chronic ethanol intake. Meanwhile, AGE improved ALD in mice by down-regulating oxidative stress and inflammatory cytokines. Furthermore, AGE notably repaired damaged intestinal epithelial barrier and suppressed the production of gut-derived lipopolysaccharide by elevating intestinal tight junction protein expression. Subsequent RNA-seq and experimental validation indicated that AGE inhibited NF-κB nuclear translocation, suppressed IκB-α, RIPK3 and MLKL phosphorylation and alleviated hepatic necroptosis in mice. CONCLUSION: In this study, we have demonstrated for the first time that AGE protects against alcoholic liver disease by regulating the gut-liver axis and inhibiting the TLR4/NF-κB/MLKL-mediated necroptosis pathway. Therefore, our present work provides important experimental evidence for AGE as a promising candidate for protection against ALD.

2.
Adv Mater ; : e2405035, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38936842

RESUMEN

Integration of solar cells and electrochromic windows offers crucial contributions to green buildings. Solar-charging zinc anode-based electrochromic devices (ZECDs) present opportunities for addressing the solar intermittency issue. However, the limited energy storage capacity of ZECDs results in wasted harnessing of solar energy as well as overcharging. Herein, spectral-selective dual-band ZECDs that continuously transport solar energy to indoor appliances by remotely controlling the repeated bleached-tinted cycles during the daytime, are reported. Hexagonal phase cesium-doped tungsten bronze (h-Cs0.32WO3, CWO) nanocrystals are adopted for dual-band ZECDs due to their independent control ability of near-infrared (NIR) and visible (VIS) light transmittance (∆T = 73.0%, 700 nm; ∆T = 83.7%, 1200 nm) and excellent cycling stability (0.8% optical contrast decay at 1200 nm after 10 000 cycles). The prototype device (i.e., CWO//Zn//CWO) delivers extraordinary thermal insulation capability, displaying a 10 °C difference between "bright" and "dark" modes. Furthermore, an Internet of Things (IoT) controller to control the NIR and VIS lights of the CWO//Zn//CWO window wirelessly with a smartphone, empowering the continuous discharging of the solar-charged window during the daytime remotely, is developed. Such windows represent an intriguing potential technology whose future impact on green buildings may be substantial.

3.
J Affect Disord ; 360: 229-241, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823591

RESUMEN

A high-fat diet can modify the composition of gut microbiota, resulting in dysbiosis. Changes in gut microbiota composition can lead to increased permeability of the gut barrier, allowing bacterial products like lipopolysaccharides (LPS) to enter circulation. This process can initiate systemic inflammation and contribute to neuroinflammation. Empagliflozin (EF), an SGLT2 inhibitor-type hypoglycemic drug, has been reported to treat neuroinflammation. However, there is a lack of evidence showing that EF regulates the gut microbiota axis to control neuroinflammation in HFD models. In this study, we explored whether EF could improve neuroinflammation caused by an HFD via regulation of the gut microbiota and the mechanism underlying this phenomenon. Our data revealed that EF alleviates pathological brain injury, reduces the reactive proliferation of astrocytes, and increases the expression of synaptophysin. In addition, the levels of inflammatory factors in hippocampal tissue were significantly decreased after EF intervention. Subsequently, the results of 16S rRNA gene sequencing showed that EF could change the microbial community structure of mice, indicating that the abundance of Lactococcus, Ligilactobacillus and other microbial populations decreased dramatically. Therefore, EF alleviates neuroinflammation by inhibiting gut microbiota-mediated astrocyte activation in the brains of high-fat diet-fed mice. Our study focused on the gut-brain axis, and broader research on neuroinflammation can provide a more holistic understanding of the mechanisms driving neurodegenerative diseases and inform the development of effective strategies to mitigate their impact on brain health. The results provide strong evidence supporting the larger clinical application of EF.


Asunto(s)
Astrocitos , Compuestos de Bencidrilo , Dieta Alta en Grasa , Microbioma Gastrointestinal , Glucósidos , Enfermedades Neuroinflamatorias , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Astrocitos/efectos de los fármacos , Glucósidos/farmacología , Ratones , Compuestos de Bencidrilo/farmacología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Encéfalo/efectos de los fármacos , Eje Cerebro-Intestino/efectos de los fármacos , Modelos Animales de Enfermedad , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Disbiosis
4.
Phytomedicine ; 129: 155665, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768535

RESUMEN

BACKGROUND: Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE: This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD: Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS: Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION: Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.


Asunto(s)
Envejecimiento , Caenorhabditis elegans , Plantas Medicinales , Caenorhabditis elegans/efectos de los fármacos , Animales , Plantas Medicinales/química , Envejecimiento/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Metformina/farmacología , Sirolimus/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química
5.
Heliyon ; 10(8): e29404, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660245

RESUMEN

Lung cancer ranks among the primary contributors to cancer-related fatalities on a global scale. Multiple research investigations have demonstrated that there exists a dysbiosis within the intestinal bacteria and short-chain fatty acids (SCFAs) is linked with immune responses in lung cancer. Qingfei mixture (QFM) has been widely used in treating lung cancer, yet the active ingredients and roles of the QFM on immune responses by targeting gut microbiota remain to be elucidated. The chemical constituents of QFM were qualitatively examined by UPLC/Q-TOF-MS. Additionally, we evaluated the therapeutic impact of the organic substance QFM on lung cancer, aiming to elucidate its mechanisms for improving the tumor-immune microenvironment. Herein, we constructed a Lewis lung carcinoma (LLC)-bearing mice model with QFM treatment to observe tumor growth and immune cell changes. Then, the feces were collected and a combinatory study using metagenomes, non-targeted metabonomics, and targeted metabonomics of SCFAs was performed. In vitro experiments have been conducted to estimate the roles of acetate and sodium propionate in CD8+ T cells. Furthermore, we treated tumor-bearing mice with QFM, QFM + MHY1485 (an mTOR activator), and QFM + an antibiotic mixture (ABX) to explore the potential therapeutic benefit of regulation of the tumor microenvironment. A total of 96 compounds were obtained from QFM by UPLC/Q-TOF-MS. Besides, the findings demonstrated that QFM exhibited significant efficacy against lung cancer, manifesting in reduced tumor growth and improved immune responses. In investigating its mechanisms, we integrated gut microbiota sequencing and fecal metabolomics, revealing that QFM effectively restored disruptions in gut microbiota and SCFAs in mice with lung cancer. QFM, acetate, or sodium propionate contributed to the up-regulation of IFN-γ, Gzms-B, perforin, IL-17, IL-6, IL-12, TNF-α expressions and decreased HDAC and IL-10 levels in vitro and in vivo. Moreover, MHY1485 and ABX weakened the effects of QFM on immunomodulation. Collectively, these results suggest that QFM may facilitate immune responses in the LLC-bearing mice via regulating the gut microbiota-derived SCFAs at least partially through targeting the mTOR signaling pathway.

6.
Foods ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672922

RESUMEN

SO2 plays an important role in wine fermentation, and its effects on wine aroma are complex and diverse. In order to investigate the effects of different SO2 additions on the fermentation process, quality, and flavor of 'Beibinghong' ice wine, we fermented 'Beibinghong' picked in 2019. We examined the fermentation rate, basic physicochemical properties, and volatile aroma compound concentrations of 'Beibinghong' ice wine under different SO2 additions and constructed a fingerprint of volatile compounds in ice wine. The results showed that 44 typical volatile compounds in 'Beibinghong' ice wine were identified and quantified. The OAV and VIP values were calculated using the threshold values of each volatile compound, and t the effect of SO2 on the volatile compounds of 'Beibinghong' ice wine might be related to five aroma compounds: ethyl butyrate, ethyl propionate, ethyl 3-methyl butyrate-M, ethyl 3-methyl butyrate-D, and 3-methyl butyraldehyde. Tasting of 'Beibinghong' ice wine at different SO2 additions revealed that the overall flavor of 'Beibinghong' ice wine was the highest at an SO2 addition level of 30 mg/L. An SO2 addition level of 30 mg/L was the optimal addition level. The results of this study are of great significance for understanding the effect of SO2 on the fermentation of 'Beibinghong' ice wine.

7.
Int J Biol Macromol ; 268(Pt 1): 131627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636752

RESUMEN

Nanoparticles-loaded bio-based polymers have emerged as a sustainable substitute to traditional oil-based packaging materials, addressing the challenges of limited recyclability and significant environmental impact. However, the functionality and efficiency of nanoparticles have a significant impact on the application of bio-based composite films. Herein, graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) coupled photocatalyst (g-C3N4-TiO2) was prepared by one-step calcination and introduced into chitosan (CS) and polyvinyl alcohol (PVA) solution to fabricate g-C3N4-TiO2/CS/PVA green renewable composite film via solution casting method. The results demonstrated the successful preparation of a Z-scheme heterojunction g-C3N4-TiO2 with exceptional photocatalytic activity. Furthermore, the incorporation of heterojunction enhanced mechanical properties, water barrier, and ultraviolet (UV) resistance properties of the fresh-keeping film. The g-C3N4-TiO2/CS/PVA composite film exhibited superior photocatalytic antibacterial preservation efficacy on strawberries under LED light, with a prolonged preservation time of up to 120 h, when compared to other films such as polyethylene (PE), CS/PVA, g-C3N4/CS/PVA, and TiO2/CS/PVA. In addition, the composite film has good recyclability and renewability. This work is expected to have great potential for low-cost fruit preservation and sustainable packaging, which also contributes to environmental protection.


Asunto(s)
Quitosano , Embalaje de Alimentos , Grafito , Alcohol Polivinílico , Titanio , Titanio/química , Quitosano/química , Alcohol Polivinílico/química , Embalaje de Alimentos/métodos , Grafito/química , Frutas/química , Catálisis , Compuestos de Nitrógeno/química , Antibacterianos/química , Antibacterianos/farmacología
8.
Artículo en Inglés | MEDLINE | ID: mdl-38512746

RESUMEN

Lateral walking gait phase recognition and prediction are the premise of hip exoskeleton application in lateral resistance walk exercise. In this work, we presented a fusion network with stacked denoise autoencoder and meta learning (SDA-NN-ML) to recognize gait phase and predict gait percentage from IMU signals. Experiments were conducted to detect the four lateral walking gait phases and predict their percentage in 10 healthy subjects across different speeds. The performance of SDA-NN-ML and other widely used algorithms including Support Vector Machine (SVM), Adaptive Boosting (AdaBoost) and Long Short Term Memory (LSTM) were evaluated. The cross-subject recognition accuracy of SDA-NN-ML (89.94%) decreased by 4.62% compared to the training accuracy, which outperformed SVM (8.60%), AdaBoost (5.61%), and LSTM (7.12%). For real-time and cross-subject prediction of gait phase percentage, the RMSE of SDA-NN-ML (0.2043) outperformed that of a single regression network (0.2426). With a signal noise ratio of 100:30, the cross-subject recognition accuracy decreased by a mere 5.70%, while the prediction result (RMSE) of SDA-NN-ML increased by 0.0167 when compared to the noise-free results. SDA-NN-ML demonstrates a stable multi-step-ahead prediction ability with an accuracy higher than 82.50% and an RMSE of less than 0.23 when the ahead time is less than 200 ms. The results demonstrated that the proposed method has high accuracy and robust performance in lateral walking gait recognition and prediction.

9.
Int J Anal Chem ; 2024: 2109127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357676

RESUMEN

Radix Dipsaci (RD) is the dry root of the Dipsacus asper Wall. ex DC., which is commonly used for tonifying the kidney and strengthening bone. The purpose of this study was to analyze the difference between raw and salt-processed RD from the chemical composition comprehensively. The fingerprints of raw and salt-processed RD were established by HPLC-DAD to determine the contents of loganin (LN), asperosaponin VI (AVI), caffeic acid (CaA), dipsanoside A (DA), dipsanoside B (DB), chlorogenic acid (CA), loganic acid (LA), isochlorogenic acid A (IA), isochlorogenic acid B (IB), and isochlorogenic acid C (IC). The results showed that after processing with salt, the components with increased contents were LA, CaA, DA, and AVI, and the components with decreased contents were CA, LN, IB, IA, IC, and DB. Then, the chemometric methods such as principal component analysis (PCA) and fisher discriminant analysis (FDA) were used to evaluate the quality of raw and salt-processed RD. In the classification of raw and salt-processed RD, the order of importance of each chemical component was LA > DB > IA > IC > IB > LN > CA > DA > AVI > CaA. These integrated methods successfully assessed the quality of raw and salt-processed RD, which will provide guidance for the development of RD as a clinical medication.

10.
Chemosphere ; 351: 141209, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224751

RESUMEN

Perfluorooctanoic acid (PFOA) is an emerging pollutant that is non-biodegradable and presents severe environmental and human health risks. In this study, we present an effective and mild approach for PFOA degradation that involves the use of nitrogen-doped carbon foam anchored with nanoscale zero-valent iron (nZVI@NCF) to activate low concentration peroxymonosulfate (PMS) for the treatment. The nZVI@NCF/PMS system efficiently removed 84.4% of PFOA (2.4 µM). The active sites of nZVI@NCF including Fe0 (110) and graphitic nitrogen played crucial roles in the degradation. Electrochemical analyses and density functional theory calculations revealed that nZVI@NCF acted as an electronic donor, transferring electrons to both PMS and PFOA during the reaction. By further analyzing the electron paramagnetic resonance and byproducts, it was determined that electron transfer and singlet oxygen were responsible for PFOA degradation. Three degradation pathways involving decarboxylation and surface reduction of PFOA in the nZVI@NCF/PMS system were determined. Finding from this study indicate that nZVI@NCF/PMS systems are effective in degrading PFOA and thus present a promising persulfate-advanced oxidation process technology for PFAS treatment.


Asunto(s)
Caprilatos , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Carbono , Contaminantes Químicos del Agua/química , Peróxidos/química , Fluorocarburos/química , Agua , Hierro/química
11.
Life (Basel) ; 14(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276278

RESUMEN

The seasonal changes in environmental conditions can alter the growth states of host plants, thereby affecting the living environment of endophytes and forming different endophytic communities. This study employs Illumina MiSeq next-generation sequencing to analyze the 16SrRNA and ITS rDNA of endophytes in 24 samples of Actinidia arguta stem tissues across different seasons. The results revealed a high richness and diversity of endophytes in Actinidia arguta, with significant seasonal variations in microbial community richness. This study identified 897 genera across 36 phyla for bacteria and 251 genera across 8 phyla for fungi. Notably, 69 bacterial genera and 19 fungal genera significantly contributed to the differences in community structure across seasons. A distinctive feature of coexistence in the endophytic community, both specific and conservative across different seasons, was observed. The bacterial community in winter demonstrated significantly higher richness and diversity compared to the other seasons. Environmental factors likely influence the optimal timing for endophyte colonization. Solar radiation, temperature, precipitation, and relative humidity significantly impact the diversity of endophytic bacteria and fungi. In addition, seasonal variations show significant differences in the nutritional modes of fungal endophytes and the degradation, ligninolysis, and ureolysis functions of bacterial endophytes. This study elucidates the potential role of endophytes in assisting Actinidia arguta in adapting to seasonal changes and provides a theoretical basis for further exploration of functional microbial strains.

12.
Curr Issues Mol Biol ; 46(1): 430-449, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38248329

RESUMEN

As transcription factors derived from transposase, FAR-RED IMPAIRED RESPONSE1 (FAR1) and its homolog FHY3 play crucial roles in the regulation of light signaling and various stress responses by coordinating the expression of downstream target genes. Despite the extensive investigation of the FAR1/FHY3 family in Arabidopsis thaliana and other species, a comprehensive examination of these genes in maize has not been conducted thus far. In this study, we employed a genomic mining approach to identify 16 ZmFAR1 genes in the maize inbred line B73, which were further classified into five subgroups based on their phylogenetic relationships. The present study characterized the predicted polypeptide sequences, molecular weights, isoelectric points, chromosomal distribution, gene structure, conserved motifs, subcellular localizations, phylogenetic relationships, and cis-regulatory elements of all members belonging to the ZmFAR1 family. Furthermore, the tissue-specific expression of the 16 ZmFAR1 genes was analyzed using RNA-seq, and their expression patterns under far-red light conditions were validated in the ear and tassel through qRT-qPCR. The observed highly temporal and spatial expression patterns of these ZmFAR1 genes were likely associated with their specific functional capabilities under different light conditions. Further analysis revealed that six ZmFAR1 genes (ZmFAR1-1, ZmFAR1-10, ZmFAR1-11, ZmFAR1-12, ZmFAR1-14, and ZmFAR1-15) exhibited a response to simulated shading treatment and actively contributed to the development of maize ears. Through the integration of expression quantitative trait loci (eQTL) analyses and population genetics, we identified the presence of potential causal variations in ZmFAR1-14 and ZmFAR1-9, which play a crucial role in regulating the kernel row number and kernel volume weight, respectively. In summary, this study represents the initial identification and characterization of ZmFAR1 family members in maize, uncovering the functional variation in candidate regulatory genes associated with the improvement of significant agronomic traits during modern maize breeding.

13.
Biomed Pharmacother ; 170: 116027, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113630

RESUMEN

Shen Qi Wan (SQW) has been proven to exert anti-inflammatory effects in the kidneys of CKD models accompanied by unclear therapeutic mechanisms. This study aims to evaluate the kidney-protective and anti-inflammatory effects of SQW and to elucidate its fundamental mechanisms for CKD treatment. Firstly, the main active components of SQW were identified by UPLC-Q-TOF/MS technique. Subsequently, we evaluated inflammatory factors, renal function and renal pathology changes following SQW treatment utilizing adenine-induced CKD mice and aquaporin 1 knockout (AQP1-/-) mice. Additionally, we conducted RNA-seq analysis and bioinformatics analysis to predict the SQW potential therapeutic targets and anti-nephritis pathways. Simultaneously, WGCNA analysis method and machine learning algorithms were used to perform a clinical prognostic analysis of potential biomarkers in CKD patients from the GEO database and validated through clinical samples. Lipopolysaccharide-induced HK-2 cells were further used to explore the mechanism. We found that renal collagen deposition was reduced, serum inflammatory cytokine levels decreased, and renal function was improved after SQW intervention. It can be inferred that ß-defensin 1 (DEFB1) may be a pivotal target, as confirmed by serum and renal tissue samples from CKD patients. Furthermore, SQW assuages inflammatory responses by fostering AQP1-mediated DEFB1 expression was confirmed in in vitro and in vivo studies. Significantly, the renal-protective effect of SQW is to some extent attenuated after AQP1 gene knockout. SQW could reduce inflammatory responses by modulating AQP1 and DEFB1. These findings underscore the potential of SQW as a promising contender for novel prevention and treatment strategies within the ambit of CKD management.


Asunto(s)
Nefritis , Insuficiencia Renal Crónica , beta-Defensinas , Humanos , Ratones , Animales , Acuaporina 1/genética , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Riñón/patología , Nefritis/patología , Antiinflamatorios
14.
New Phytol ; 241(1): 490-503, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37858961

RESUMEN

Tassel branch number (TBN) is a key agronomic trait for adapting to high-density planting and grain yield in maize. However, the molecular regulatory mechanisms underlying tassel branching are still largely unknown. Here, we used molecular and genetic studies together to show that ZmELF3.1 plays a critical role in regulating TBN in maize. Previous studies showed that ZmELF3.1 forms the evening complex through interacting with ZmELF4 and ZmLUX to regulate flowering in maize and that RA2 and TSH4 (ZmSBP2) suppresses and promotes TBN in maize, respectively. In this study, we show that loss-of-function mutants of ZmELF3.1 exhibit a significant increase of TBN. We also show that RA2 directly binds to the promoter of TSH4 and represses its expression, thus leading to reduced TBN. We further demonstrate that ZmELF3.1 directly interacts with both RA2 and ZmELF4.2 to form tri-protein complexes that further enhance the binding of RA2 to the promoter of TSH4, leading to suppressed TSH4 expression and consequently decreased TBN. Our combined results establish a novel functional link between the ELF3-ELF4-RA2 complex and miR156-SPL regulatory module in regulating tassel branching and provide a valuable target for genetic improvement of tassel branching in maize.


Asunto(s)
Inflorescencia , Proteínas de Plantas , Sitios de Carácter Cuantitativo , Zea mays , Agricultura , Inflorescencia/genética , Fenotipo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/metabolismo
15.
Opt Express ; 31(20): 33535-33547, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859133

RESUMEN

Flexible pressure sensors provide a promising platform for artificial smart skins, and photonic devices provide a new technique to fabricate pressure sensors. Here, we present a flexible waveguide-based optical pressure sensor based on a microring structure. The waveguide-based optical pressure sensor is based on a five-cascade microring array structure with a size of 1500 µm × 500 µm and uses the change in output power to linearly characterize the change in pressure acting on the device. The results show that the device has a sensing range of 0-60 kPa with a sensitivity of 23.14 µW/kPa, as well as the ability to detect pulse signals, swallowing, hand gestures, etc. The waveguide-based pressure sensors offer the advantages of good output linearity, high integration density and easy-to-build arrays.

16.
Foods ; 12(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37835267

RESUMEN

Actinidia arguta, known for its distinctive flavor and high nutritional value, has seen an increase in cultivation and variety identification. However, the characterization of its volatile aroma compounds remains limited. This study aimed to understand the flavor quality and key volatile aroma compounds of different A. arguta fruits. We examined 35 A. arguta resource fruits for soluble sugars, titratable acids, and sugar-acid ratios. Their organic acids and volatile aroma compounds were analyzed using high-performance liquid chromatography (HPLC) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The study found that among the 35 samples tested, S12 had a higher sugar-acid ratio due to its higher sugar content despite having a high titratable acid content, making its fruit flavor superior to other sources. The A. arguta resource fruits can be classified into two types: those dominated by citric acid and those dominated by quinic acid. The analysis identified a total of 76 volatile aroma substances in 35 A. arguta resource fruits. These included 18 esters, 14 alcohols, 16 ketones, 12 aldehydes, seven terpenes, three pyrazines, two furans, two acids, and two other compounds. Aldehydes had the highest relative content of total volatile compounds. Using the orthogonal partial least squares discriminant method (OPLS-DA) analysis, with the 76 volatile aroma substances as dependent variables and different soft date kiwifruit resources as independent variables, 33 volatile aroma substances with variable importance in projection (VIP) greater than 1 were identified as the main aroma substances of A. arguta resource fruits. The volatile aroma compounds with VIP values greater than 1 were analyzed for odor activity value (OAV). The OAV values of isoamyl acetate, 3-methyl-1-butanol, 1-hexanol, and butanal were significantly higher than those of the other compounds. This suggests that these four volatile compounds contribute more to the overall aroma of A. arguta. This study is significant for understanding the differences between the fruit aromas of different A. arguta resources and for scientifically recognizing the characteristic compounds of the fruit aromas of different A. arguta resources.

17.
Int Immunopharmacol ; 124(Pt A): 110856, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37647680

RESUMEN

BACKGROUND: Electroacupuncture (EA) is given to assist in the treatment of MS, which is an effective therapeutic method. However, the therapy mechanism of EA related to stem cells in the treatment of MS is not yet known. In this study, we used a classic animal model of multiple sclerosis: experimental autoimmune encephalomyelitis (EAE) to evaluate the therapeutic effect of EA at Zusanli (ST36) acupoint in EAE and shed light on its potential roles in the effects of stem cells in vivo. METHODS: The EAE animal models were established. From the first day after immunization, EAE model mice received EA at ST36 acupoint, named the EA group. The weight and clinical score of the three groups were recorded for 28 days. The demyelination, inflammatory cell infiltration, and markers of neural stem cells (NSCs), hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs) were compared. RESULTS: We showed that EAE mice treated with EA at ST36 acupoint, were suppressed in demyelination and inflammatory cell infiltration, and thus decreased clinical score and weight loss and mitigated the development of EAE when compared with the EAE group. Moreover, our data revealed that the proportions of NSCs, HSCs, and MSCs increased in the EA group compared with the EAE group. CONCLUSIONS: Our study suggested that EA at ST36 acupoint was an effective nonpharmacological therapeutic protocol that not only reduced the CNS demyelination and inflammatory cell infiltration in EAE disease but also increased the proportions of various stem cells. Further study is necessary to better understand how EA at the ST36 acupoint affects EAE.

18.
J Proteomics ; 288: 104959, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37478968

RESUMEN

Danshen, belongs to the Lamiaceae family, and its scientific name is Salvia miltiorrhiza Bunge. It is a valuable medicinal plant to prevent and treat cardiovascular and cerebrovascular diseases. Lysine succinylation, a widespread modification found in various organisms, plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. Our findings reveal 566 lysine succinylation sites in 348 protein sequences. We observed 110 succinylated proteins related to secondary metabolism, totaling 210 modification sites. Our analysis identified 53 types of enzymes among the succinylated proteins, including phenylalanine ammonia-lyase (PAL) and aldehyde dehydrogenase (ALDH). PAL, a crucial enzyme involved in the biosynthesis of rosmarinic acid and flavonoids, displayed succinylation at two sites. ALDH, which participates in the phenylpropane metabolic pathway, was succinylated at 8 eight sites. These observations suggest that lysine succinylation may play a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on plant succinylation, specifically as a reference point. SIGNIFICANCE: Salvia miltiorrhiza Bunge is a valuable medicinal plant that prevents and treats cardiovascular and cerebrovascular diseases. Lysine succinylation plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. These observations suggest that lysine succinylation may act as a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on succinylation in plants, specifically as a reference point.


Asunto(s)
Salvia miltiorrhiza , Metabolismo Secundario , Salvia miltiorrhiza/metabolismo , Lisina/metabolismo , Proteoma/metabolismo , Espectrometría de Masas en Tándem , Proteómica
19.
Mol Biol Evol ; 40(8)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37494285

RESUMEN

Future breeding is likely to involve the detection and removal of deleterious alleles, which are mutations that negatively affect crop fitness. However, little is known about the prevalence of such mutations and their effects on phenotypic traits in the context of modern crop breeding. To address this, we examined the number and frequency of deleterious mutations in 350 elite maize inbred lines developed over the past few decades in China and the United States. Our findings reveal an accumulation of weakly deleterious mutations and a decrease in strongly deleterious mutations, indicating the dominant effects of genetic drift and purifying selection for the two types of mutations, respectively. We also discovered that slightly deleterious mutations, when at lower frequencies, were more likely to be heterozygous in the developed hybrids. This is consistent with complementation as a potential explanation for heterosis. Subsequently, we found that deleterious mutations accounted for more of the variation in phenotypic traits than nondeleterious mutations with matched minor allele frequencies, especially for traits related to leaf angle and flowering time. Moreover, we detected fewer deleterious mutations in the promoter and gene body regions of differentially expressed genes across breeding eras than in nondifferentially expressed genes. Overall, our results provide a comprehensive assessment of the prevalence and impact of deleterious mutations in modern maize breeding and establish a useful baseline for future maize improvement efforts.


Asunto(s)
Fitomejoramiento , Zea mays , Zea mays/genética , Prevalencia , Frecuencia de los Genes , Mutación
20.
Phytomedicine ; 116: 154890, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37229892

RESUMEN

BACKGROUND: Icariin (ICA) is the main active component of Epimedium, a traditional Chinese medicine (TCM), known to enhance cognitive function in Alzheimer's disease (AD). This study aims to investigate and summarize the mechanisms through which ICA treats AD. METHODS: The PubMed and CNKI databases were utilized to review the advancements in ICA's role in AD prevention and treatment by analyzing literature published between January 2005 and April 2023. To further illustrate ICA's impact on AD development, tables, and images are included to summarize the relationships between various mechanisms. RESULTS: The study reveals that ICA ameliorates cognitive deficits in AD model mice by modulating Aß via multiple pathways, including BACE-1, NO/cGMP, Wnt/Ca2+, and PI3K/Akt signaling. ICA exhibits neuroprotective properties by inhibiting neuronal apoptosis through the suppression of ER stress in AD mice, potentially linked to NF-κB, MAPK, ERK, and PERK/Eif2α signaling pathways. Moreover, ICA may safeguard neurons by attenuating mitochondrial oxidative stress injury. ICA can also enhance learning, memory, and cognition by improving synaptic structure via regulation of the PSD-95 protein. Furthermore, ICA can mitigate neuroinflammation by inactivating microglial activity through the upregulation of PPARγ, TAK1/IKK/NF-κB, and JNK/p38 MAPK signaling pathways. CONCLUSION: This study indicates that ICA possesses multiple beneficial effects in AD treatment. Through the integration of pharmacological and molecular biological research, ICA may emerge as a promising candidate to expedite the advancement of TCM in the clinical management of AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , FN-kappa B , Fosfatidilinositol 3-Quinasas , Flavonoides/farmacología , Flavonoides/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...