Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Phytomedicine ; 135: 156050, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39303509

RESUMEN

BACKGROUND: Acetaminophen (APAP), commonly used for its antipyretic and analgesic properties, can cause severe liver injury or even acute liver failure when overdosed. However, the options for treating APAP-induced liver toxicity are limited. Shenqi Pill (SQP), a traditional Chinese herbal formula, has shown effectiveness in treating various liver ailments. SQP consists of cinnamon, aconite, rehmannia, cornus, peony bark, Chinese yam, poria, and alisma in a ratio of 1:1:8:4:3:4:3:3. However, the mechanisms and active components of SQP that counteract drug-induced liver injury (DILI) are not well understood. PURPOSE: This study aimed to explore the protective effects of SQP against APAP-induced liver injury in both laboratory and animal settings. It seeks to identify the active components and potential mechanisms by which SQP targets mitochondria to alleviate liver damage. METHODS: A mouse model with APAP-induced liver injury was established to assess SQP's therapeutic impact. This study then analyzed the components of SQP using UPLC-Q-TOF-MS in both in vivo and in vitro environments. Network pharmacology and the GEO database helped predict potential pathways and targets. Potential active components were identified through spectrum-effect relationship analysis and validated their efficacy using Seahorse assays and molecular docking. RESULTS: Treatment with SQP significantly reduced liver dysfunction, tissue damage, lipid metabolic disruptions, and inflammation caused by APAP in mice. In cellular tests, SQP-treated serum notably enhanced mitochondrial function, maintained membrane potential, decreased ROS levels, and prevented mitochondrial permeability transition pore opening. Biochemically, SQP reversed the suppression of p-AMPK, p-ACC, CPT1, and ACADM expression caused by APAP overdose. This study identified 97 in vitro and 24 in vivo components of SQP, with eight showing significant mitochondrial benefits. Molecular docking studies suggest that fuziline and paeoniflorin could activate AMPK. CONCLUSION: SQP effectively mitigates APAP-induced liver injury by enhancing mitochondrial function via the AMPK-ACC-CPT1-ACADM pathway. Moreover, this study introduces a novel strategy for analyzing the relationship between the chemical and pharmacological properties of drug-containing serum, successfully identifying compounds with mitochondrial activity. Fuziline and paeoniflorin, in particular, emerge as promising mitochondrial protectants and warrant further investigation. This research underpins the development of innovative treatments for DILI using SQP and its components.

2.
Nanomaterials (Basel) ; 14(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39269044

RESUMEN

To conquer the challenges of charge accumulation and surface flashover in epoxy resin under direct current (DC) electric fields, numerous efforts have been made to research dielectric barrier discharge (DBD) plasma treatments using CF4/Ar as the medium gas, which has proven effective in improving surface flashover voltage. However, despite being an efficient plasma etching medium, SF6/Ar has remained largely unexplored. In this work, we constructed a DBD plasma device with an SF6/Ar gas medium and explored the influence of processing times and gas flow rates on the morphology and surface flashover voltage of epoxy resin. The surface morphology observed by SEM indicates that the degree of plasma etching intensifies with processing time and gas flow rate, and the quantitative characterization of AFM indicates a maximum roughness of 144 nm after 3 min of treatment. Flashover test results show that at 2 min of processing time, the surface flashover voltage reached a maximum of 19.02 kV/mm, which is 25.49% higher than that of the untreated sample and previously reported works. In addition to the effect of surface roughness, charge trap distribution shows that fluorinated groups help to deepen the trap energy levels and density. The optimal modification was achieved at a gas flow rate of 3.5 slm coupled with 2 min of processing time. Furthermore, density functional theory (DFT) calculations reveal that fluorination introduces additional electron traps (0.29 eV) and hole traps (0.38 eV), enhancing the capture of charge carriers and suppressing surface flashover.

3.
Pharmacol Res ; 208: 107364, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181345

RESUMEN

We delve into the critical role of the gut microbiota and its metabolites in the pathogenesis and progression of hepatobiliary and pancreatic (HBP) cancers, illuminating an urgent need for breakthroughs in diagnostic and therapeutic strategies. Given the high mortality rates associated with HBP cancers, which are attributed to aggressive recurrence, metastasis, and poor responses to chemotherapy, exploring microbiome research presents a promising frontier. This research highlights how microbial metabolites, including secondary bile acids, short-chain fatty acids, and lipopolysaccharides, crucially influence cancer cell behaviors such as proliferation, apoptosis, and immune evasion, significantly contributing to the oncogenesis and progression of HBP cancers. By integrating the latest findings, we discuss the association of microbial alterations with HBP cancers, key metabolites, and their implications, and how metabolomics and microbiomics can enhance diagnostic precision. Furthermore, the paper explores strategies for targeted therapies through microbiome metabolomics, including the direct therapeutic effects of microbiome metabolites and potential synergistic effects on conventional therapies. We also recognize that the field of microbial metabolites for the diagnosis and treatment of tumors still has a lot of problems to be solved. The aim of this study is to pioneer microbial metabolite research and provide a reference for HBP cancer diagnosis, treatment, and prognosis.


Asunto(s)
Microbioma Gastrointestinal , Metaboloma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/microbiología , Animales , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/microbiología , Metabolómica/métodos , Medicina de Precisión , Neoplasias del Sistema Biliar/tratamiento farmacológico , Neoplasias del Sistema Biliar/diagnóstico , Neoplasias del Sistema Biliar/metabolismo , Neoplasias del Sistema Biliar/microbiología
4.
Life (Basel) ; 14(8)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39202688

RESUMEN

Genetic and environmental factors influence the growth and quality of medicinal plants. In recent years, rhizosphere microorganisms have also emerged as significant factors affecting the quality of medicinal plants. This study aimed to identify Schisandra resources with high lignan content and analyze the microbial diversity of the rhizosphere soil. High-performance liquid chromatography was used to measure the lignan content in nine Schisandra fruits. High-throughput sequencing was used to analyze the 16S rDNA sequences of rhizosphere bacteria to identify bacterial species diversity. The total lignan content of the nine Schisandra resources ranged from 9.726 mg/g to 14.031 mg/g, with ZJ27 having the highest content and ZJ25 the lowest. Among the six lignan components, Schisandrol A had the highest content, ranging from 5.133 mg/g to 6.345 mg/g, with a significant difference between ZJ25, ZJ27, and other resources (p < 0.05). Schizandrin C had the lowest content, ranging from 0.062 mg/g to 0.419 mg/g, with more significant differences among the resources. A total of 903,933 sequences were obtained from the rhizosphere soil of the nine Schisandra resources, clustered into 10,437 OTUs at a 97% similarity level. The dominant bacterial phyla were Actinobacteriota, Acidobacteriota, Proteobacteria, Chloroflexi, Gemmatimonadota, and Verrucomicrobiota. The dominant bacterial genera were Candidatus_Udaeobacter, Candidatus_Solibacter, RB41, Bradyrhizobium, Gaiella, and Arthrobacter. ZJ27 is the Schisandra resource with the highest lignan content, and the rhizosphere bacteria of Schisandra are rich in diversity. Schisandra B is negatively correlated with Bryobacter, Candidatus_Solibacter, and unnamed genera of Gaiellales.

5.
Nat Commun ; 15(1): 6840, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122723

RESUMEN

The world's oceans are under threat from the prevalence of heatwaves caused by climate change. Despite this, there is a lack of understanding regarding their impact on seawater oxygen levels - a crucial element in sustaining biological survival. Here, we find that heatwaves can trigger low-oxygen extreme events, thereby amplifying the signal of deoxygenation. By utilizing in situ observations and state-of-the-art climate model simulations, we provide a global assessment of the relationship between the two types of extreme events in the surface ocean (0-10 m). Our results show compelling evidence of a remarkable surge in the co-occurrence of marine heatwaves and low-oxygen extreme events. Hotspots of these concurrent stressors are identified in the study, indicating that this intensification is more pronounced in high-biomass regions than in those with relatively low biomass. The rise in the compound events is primarily attributable to long-term warming primarily induced by anthropogenic forcing, in tandem with natural internal variability modulating their spatial distribution. Our findings suggest the ocean is losing its breath under the influence of heatwaves, potentially experiencing more severe damage than previously anticipated.


Asunto(s)
Cambio Climático , Océanos y Mares , Agua de Mar , Agua de Mar/química , Oxígeno , Modelos Climáticos , Calor , Calor Extremo/efectos adversos , Biomasa
6.
Front Immunol ; 15: 1372051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076985

RESUMEN

Background: The gut microbiota (GM) has been implicated in neurological disorders, but the relationship with hydrocephalus, especially the underlying mechanistic pathways, is unclear. Using Mendelian randomization (MR), we aim to discover the mediating role of inflammatory factors in the relationship between GM and hydrocephalus. Methods: After removing confounders, univariable and multivariable MR analyses were performed using summary statistics to assess the causal relationships between GM, inflammatory factors (IL-17A and IL-27), and types of hydrocephalus. Meta-analyses were used to reconcile the differences in MR results between different hydrocephalus sources. Finally, mediator MR analyses were applied to determine the mediating effect of inflammatory factors. Various sensitivity analysis methods were employed to ensure the reliability and stability of the results. Results: After correction for P-values, Firmicutes (phylum) (OR, 0.34; 95%CI, 0.17-0.69; P = 2.71E-03, P FDR = 2.44E-02) significantly reduced the risk of obstructive hydrocephalus. The remaining 18 different taxa of GM had potential causal relationships for different types of hydrocephalus. In addition, Firmicutes (phylum) decreased the risk of obstructive hydrocephalus by increasing levels of IL-17A (mediating effect = 21.01%), while Eubacterium ruminantium group (genus) increased the risk of normal-pressure hydrocephalus by decreasing levels of IL-27 (mediating effect = 7.48%). Conclusion: We reveal the connection between GM, inflammatory factors (IL-17A and IL-27), and hydrocephalus, which lays the foundation for unraveling the mechanism between GM and hydrocephalus.


Asunto(s)
Microbioma Gastrointestinal , Hidrocefalia , Interleucina-17 , Análisis de la Aleatorización Mendeliana , Humanos , Microbioma Gastrointestinal/inmunología , Hidrocefalia/microbiología , Hidrocefalia/etiología , Hidrocefalia/inmunología , Inflamación/microbiología , Interleucina-17/genética , Interleucina-27/genética
7.
Phytomedicine ; 132: 155658, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981149

RESUMEN

BACKGROUND: Alcohol-related liver damage is the most prevalent chronic liver disease, which creates a heavy public health burden worldwide. The leaves of Ampelopsis grossedentata have been considered a popular tea and traditional herbal medicine in China for more than one thousand years, and possess anti-inflammatory, antioxidative, hepatoprotective, and antiviral activities. PURPOSE: We explored the protective effects of Ampelopsis grossedentata extract (AGE) against chronic alcohol-induced hepatic injury (alcoholic liver disease, ALD), aiming to elucidate its underlying mechanisms. METHODS: Firstly, UPLC-Q/TOF-MS analysis and network pharmacology were used to identify the constituents and elucidate the potential mechanisms of AGE against ALD. Secondly, C57BL/6 mice were pair-fed the Lieber-DeCarli diet containing either isocaloric maltodextrin or ethanol, AGE (150 and 300 mg/kg/d) and silymarin (200 mg/kg) were administered to chronic ethanol-fed mice for 7 weeks to evaluate the hepatoprotective effects. Serum biochemical parameters were determined, hepatic and ileum sections were used for histologic examination, and levels of inflammatory cytokines and oxidative stress in the liver were examined. The potential molecular mechanisms of AGE in improving ALD were demonstrated by RNA-seq, Western blotting analysis, and immunofluorescence staining. RESULTS: Ten main constituents of AGE were identified using UPLC-Q/TOF-MS and 274 potential ALD-related targets were identified. The enriched KEGG pathways included Toll-like receptor signaling pathway, NF-κB signaling pathway, and necroptosis. Moreover, in vivo experimental studies demonstrated that AGE significantly reduced serum aminotransferase levels and improved pathological abnormalities after chronic ethanol intake. Meanwhile, AGE improved ALD in mice by down-regulating oxidative stress and inflammatory cytokines. Furthermore, AGE notably repaired damaged intestinal epithelial barrier and suppressed the production of gut-derived lipopolysaccharide by elevating intestinal tight junction protein expression. Subsequent RNA-seq and experimental validation indicated that AGE inhibited NF-κB nuclear translocation, suppressed IκB-α, RIPK3 and MLKL phosphorylation and alleviated hepatic necroptosis in mice. CONCLUSION: In this study, we have demonstrated for the first time that AGE protects against alcoholic liver disease by regulating the gut-liver axis and inhibiting the TLR4/NF-κB/MLKL-mediated necroptosis pathway. Therefore, our present work provides important experimental evidence for AGE as a promising candidate for protection against ALD.


Asunto(s)
Ampelopsis , Hepatopatías Alcohólicas , Ratones Endogámicos C57BL , FN-kappa B , Farmacología en Red , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/prevención & control , FN-kappa B/metabolismo , Ampelopsis/química , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Extractos Vegetales/farmacología , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/química , Etanol , Citocinas/metabolismo
8.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062838

RESUMEN

LuxR-type regulators play pivotal roles in regulating numerous bacterial processes, including bacterial motility and virulence, thereby exerting a significant influence on bacterial behavior and pathogenicity. Xanthomonas oryzae pv. oryzicola, a rice pathogen, causes bacterial leaf streak. Our research has identified VmsR, which is a response regulator of the two-component system (TCS) that belongs to the LuxR family. These findings of the experiment reveal that VmsR plays a crucial role in regulating pathogenicity, motility, biofilm formation, and the production of extracellular polysaccharides (EPSs) in Xoc GX01. Notably, our study shows that the vmsR mutant exhibits a reduced swimming motility but an enhanced swarming motility. Furthermore, this mutant displays decreased virulence while significantly increasing EPS production and biofilm formation. We have uncovered that VmsR directly interacts with the promoter regions of fliC and fliS, promoting their expression. In contrast, VmsR specifically binds to the promoter of gumB, resulting in its downregulation. These findings indicate that the knockout of vmsR has profound effects on virulence, motility, biofilm formation, and EPS production in Xoc GX01, providing insights into the intricate regulatory network of Xoc.


Asunto(s)
Proteínas Bacterianas , Biopelículas , Regulación Bacteriana de la Expresión Génica , Polisacáridos Bacterianos , Xanthomonas , Xanthomonas/patogenicidad , Xanthomonas/genética , Xanthomonas/metabolismo , Biopelículas/crecimiento & desarrollo , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/biosíntesis , Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
9.
Adv Mater ; 36(35): e2405035, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936842

RESUMEN

Integration of solar cells and electrochromic windows offers crucial contributions to green buildings. Solar-charging zinc anode-based electrochromic devices (ZECDs) present opportunities for addressing the solar intermittency issue. However, the limited energy storage capacity of ZECDs results in wasted harnessing of solar energy as well as overcharging. Herein, spectral-selective dual-band ZECDs that continuously transport solar energy to indoor appliances by remotely controlling the repeated bleached-tinted cycles during the daytime, are reported. Hexagonal phase cesium-doped tungsten bronze (h-Cs0.32WO3, CWO) nanocrystals are adopted for dual-band ZECDs due to their independent control ability of near-infrared (NIR) and visible (VIS) light transmittance (∆T = 73.0%, 700 nm; ∆T = 83.7%, 1200 nm) and excellent cycling stability (0.8% optical contrast decay at 1200 nm after 10 000 cycles). The prototype device (i.e., CWO//Zn//CWO) delivers extraordinary thermal insulation capability, displaying a 10 °C difference between "bright" and "dark" modes. Furthermore, an Internet of Things (IoT) controller to control the NIR and VIS lights of the CWO//Zn//CWO window wirelessly with a smartphone, empowering the continuous discharging of the solar-charged window during the daytime remotely, is developed. Such windows represent an intriguing potential technology whose future impact on green buildings may be substantial.

10.
J Affect Disord ; 360: 229-241, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823591

RESUMEN

A high-fat diet can modify the composition of gut microbiota, resulting in dysbiosis. Changes in gut microbiota composition can lead to increased permeability of the gut barrier, allowing bacterial products like lipopolysaccharides (LPS) to enter circulation. This process can initiate systemic inflammation and contribute to neuroinflammation. Empagliflozin (EF), an SGLT2 inhibitor-type hypoglycemic drug, has been reported to treat neuroinflammation. However, there is a lack of evidence showing that EF regulates the gut microbiota axis to control neuroinflammation in HFD models. In this study, we explored whether EF could improve neuroinflammation caused by an HFD via regulation of the gut microbiota and the mechanism underlying this phenomenon. Our data revealed that EF alleviates pathological brain injury, reduces the reactive proliferation of astrocytes, and increases the expression of synaptophysin. In addition, the levels of inflammatory factors in hippocampal tissue were significantly decreased after EF intervention. Subsequently, the results of 16S rRNA gene sequencing showed that EF could change the microbial community structure of mice, indicating that the abundance of Lactococcus, Ligilactobacillus and other microbial populations decreased dramatically. Therefore, EF alleviates neuroinflammation by inhibiting gut microbiota-mediated astrocyte activation in the brains of high-fat diet-fed mice. Our study focused on the gut-brain axis, and broader research on neuroinflammation can provide a more holistic understanding of the mechanisms driving neurodegenerative diseases and inform the development of effective strategies to mitigate their impact on brain health. The results provide strong evidence supporting the larger clinical application of EF.


Asunto(s)
Astrocitos , Compuestos de Bencidrilo , Dieta Alta en Grasa , Microbioma Gastrointestinal , Glucósidos , Enfermedades Neuroinflamatorias , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Astrocitos/efectos de los fármacos , Glucósidos/farmacología , Ratones , Compuestos de Bencidrilo/farmacología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Encéfalo/efectos de los fármacos , Eje Cerebro-Intestino/efectos de los fármacos , Modelos Animales de Enfermedad , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Disbiosis
11.
Phytomedicine ; 129: 155665, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768535

RESUMEN

BACKGROUND: Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE: This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD: Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS: Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION: Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.


Asunto(s)
Envejecimiento , Caenorhabditis elegans , Plantas Medicinales , Caenorhabditis elegans/efectos de los fármacos , Animales , Plantas Medicinales/química , Envejecimiento/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Metformina/farmacología , Sirolimus/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química
12.
Int J Biol Macromol ; 268(Pt 1): 131627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636752

RESUMEN

Nanoparticles-loaded bio-based polymers have emerged as a sustainable substitute to traditional oil-based packaging materials, addressing the challenges of limited recyclability and significant environmental impact. However, the functionality and efficiency of nanoparticles have a significant impact on the application of bio-based composite films. Herein, graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) coupled photocatalyst (g-C3N4-TiO2) was prepared by one-step calcination and introduced into chitosan (CS) and polyvinyl alcohol (PVA) solution to fabricate g-C3N4-TiO2/CS/PVA green renewable composite film via solution casting method. The results demonstrated the successful preparation of a Z-scheme heterojunction g-C3N4-TiO2 with exceptional photocatalytic activity. Furthermore, the incorporation of heterojunction enhanced mechanical properties, water barrier, and ultraviolet (UV) resistance properties of the fresh-keeping film. The g-C3N4-TiO2/CS/PVA composite film exhibited superior photocatalytic antibacterial preservation efficacy on strawberries under LED light, with a prolonged preservation time of up to 120 h, when compared to other films such as polyethylene (PE), CS/PVA, g-C3N4/CS/PVA, and TiO2/CS/PVA. In addition, the composite film has good recyclability and renewability. This work is expected to have great potential for low-cost fruit preservation and sustainable packaging, which also contributes to environmental protection.


Asunto(s)
Quitosano , Embalaje de Alimentos , Grafito , Alcohol Polivinílico , Titanio , Titanio/química , Quitosano/química , Alcohol Polivinílico/química , Embalaje de Alimentos/métodos , Grafito/química , Frutas/química , Catálisis , Compuestos de Nitrógeno/química , Antibacterianos/química , Antibacterianos/farmacología
13.
Heliyon ; 10(8): e29404, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660245

RESUMEN

Lung cancer ranks among the primary contributors to cancer-related fatalities on a global scale. Multiple research investigations have demonstrated that there exists a dysbiosis within the intestinal bacteria and short-chain fatty acids (SCFAs) is linked with immune responses in lung cancer. Qingfei mixture (QFM) has been widely used in treating lung cancer, yet the active ingredients and roles of the QFM on immune responses by targeting gut microbiota remain to be elucidated. The chemical constituents of QFM were qualitatively examined by UPLC/Q-TOF-MS. Additionally, we evaluated the therapeutic impact of the organic substance QFM on lung cancer, aiming to elucidate its mechanisms for improving the tumor-immune microenvironment. Herein, we constructed a Lewis lung carcinoma (LLC)-bearing mice model with QFM treatment to observe tumor growth and immune cell changes. Then, the feces were collected and a combinatory study using metagenomes, non-targeted metabonomics, and targeted metabonomics of SCFAs was performed. In vitro experiments have been conducted to estimate the roles of acetate and sodium propionate in CD8+ T cells. Furthermore, we treated tumor-bearing mice with QFM, QFM + MHY1485 (an mTOR activator), and QFM + an antibiotic mixture (ABX) to explore the potential therapeutic benefit of regulation of the tumor microenvironment. A total of 96 compounds were obtained from QFM by UPLC/Q-TOF-MS. Besides, the findings demonstrated that QFM exhibited significant efficacy against lung cancer, manifesting in reduced tumor growth and improved immune responses. In investigating its mechanisms, we integrated gut microbiota sequencing and fecal metabolomics, revealing that QFM effectively restored disruptions in gut microbiota and SCFAs in mice with lung cancer. QFM, acetate, or sodium propionate contributed to the up-regulation of IFN-γ, Gzms-B, perforin, IL-17, IL-6, IL-12, TNF-α expressions and decreased HDAC and IL-10 levels in vitro and in vivo. Moreover, MHY1485 and ABX weakened the effects of QFM on immunomodulation. Collectively, these results suggest that QFM may facilitate immune responses in the LLC-bearing mice via regulating the gut microbiota-derived SCFAs at least partially through targeting the mTOR signaling pathway.

14.
Foods ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672922

RESUMEN

SO2 plays an important role in wine fermentation, and its effects on wine aroma are complex and diverse. In order to investigate the effects of different SO2 additions on the fermentation process, quality, and flavor of 'Beibinghong' ice wine, we fermented 'Beibinghong' picked in 2019. We examined the fermentation rate, basic physicochemical properties, and volatile aroma compound concentrations of 'Beibinghong' ice wine under different SO2 additions and constructed a fingerprint of volatile compounds in ice wine. The results showed that 44 typical volatile compounds in 'Beibinghong' ice wine were identified and quantified. The OAV and VIP values were calculated using the threshold values of each volatile compound, and t the effect of SO2 on the volatile compounds of 'Beibinghong' ice wine might be related to five aroma compounds: ethyl butyrate, ethyl propionate, ethyl 3-methyl butyrate-M, ethyl 3-methyl butyrate-D, and 3-methyl butyraldehyde. Tasting of 'Beibinghong' ice wine at different SO2 additions revealed that the overall flavor of 'Beibinghong' ice wine was the highest at an SO2 addition level of 30 mg/L. An SO2 addition level of 30 mg/L was the optimal addition level. The results of this study are of great significance for understanding the effect of SO2 on the fermentation of 'Beibinghong' ice wine.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38512746

RESUMEN

Lateral walking gait phase recognition and prediction are the premise of hip exoskeleton application in lateral resistance walk exercise. In this work, we presented a fusion network with stacked denoise autoencoder and meta learning (SDA-NN-ML) to recognize gait phase and predict gait percentage from IMU signals. Experiments were conducted to detect the four lateral walking gait phases and predict their percentage in 10 healthy subjects across different speeds. The performance of SDA-NN-ML and other widely used algorithms including Support Vector Machine (SVM), Adaptive Boosting (AdaBoost) and Long Short Term Memory (LSTM) were evaluated. The cross-subject recognition accuracy of SDA-NN-ML (89.94%) decreased by 4.62% compared to the training accuracy, which outperformed SVM (8.60%), AdaBoost (5.61%), and LSTM (7.12%). For real-time and cross-subject prediction of gait phase percentage, the RMSE of SDA-NN-ML (0.2043) outperformed that of a single regression network (0.2426). With a signal noise ratio of 100:30, the cross-subject recognition accuracy decreased by a mere 5.70%, while the prediction result (RMSE) of SDA-NN-ML increased by 0.0167 when compared to the noise-free results. SDA-NN-ML demonstrates a stable multi-step-ahead prediction ability with an accuracy higher than 82.50% and an RMSE of less than 0.23 when the ahead time is less than 200 ms. The results demonstrated that the proposed method has high accuracy and robust performance in lateral walking gait recognition and prediction.

16.
Int J Anal Chem ; 2024: 2109127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357676

RESUMEN

Radix Dipsaci (RD) is the dry root of the Dipsacus asper Wall. ex DC., which is commonly used for tonifying the kidney and strengthening bone. The purpose of this study was to analyze the difference between raw and salt-processed RD from the chemical composition comprehensively. The fingerprints of raw and salt-processed RD were established by HPLC-DAD to determine the contents of loganin (LN), asperosaponin VI (AVI), caffeic acid (CaA), dipsanoside A (DA), dipsanoside B (DB), chlorogenic acid (CA), loganic acid (LA), isochlorogenic acid A (IA), isochlorogenic acid B (IB), and isochlorogenic acid C (IC). The results showed that after processing with salt, the components with increased contents were LA, CaA, DA, and AVI, and the components with decreased contents were CA, LN, IB, IA, IC, and DB. Then, the chemometric methods such as principal component analysis (PCA) and fisher discriminant analysis (FDA) were used to evaluate the quality of raw and salt-processed RD. In the classification of raw and salt-processed RD, the order of importance of each chemical component was LA > DB > IA > IC > IB > LN > CA > DA > AVI > CaA. These integrated methods successfully assessed the quality of raw and salt-processed RD, which will provide guidance for the development of RD as a clinical medication.

17.
Chemosphere ; 351: 141209, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224751

RESUMEN

Perfluorooctanoic acid (PFOA) is an emerging pollutant that is non-biodegradable and presents severe environmental and human health risks. In this study, we present an effective and mild approach for PFOA degradation that involves the use of nitrogen-doped carbon foam anchored with nanoscale zero-valent iron (nZVI@NCF) to activate low concentration peroxymonosulfate (PMS) for the treatment. The nZVI@NCF/PMS system efficiently removed 84.4% of PFOA (2.4 µM). The active sites of nZVI@NCF including Fe0 (110) and graphitic nitrogen played crucial roles in the degradation. Electrochemical analyses and density functional theory calculations revealed that nZVI@NCF acted as an electronic donor, transferring electrons to both PMS and PFOA during the reaction. By further analyzing the electron paramagnetic resonance and byproducts, it was determined that electron transfer and singlet oxygen were responsible for PFOA degradation. Three degradation pathways involving decarboxylation and surface reduction of PFOA in the nZVI@NCF/PMS system were determined. Finding from this study indicate that nZVI@NCF/PMS systems are effective in degrading PFOA and thus present a promising persulfate-advanced oxidation process technology for PFAS treatment.


Asunto(s)
Caprilatos , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Carbono , Contaminantes Químicos del Agua/química , Peróxidos/química , Fluorocarburos/química , Agua , Hierro/química
18.
Life (Basel) ; 14(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276278

RESUMEN

The seasonal changes in environmental conditions can alter the growth states of host plants, thereby affecting the living environment of endophytes and forming different endophytic communities. This study employs Illumina MiSeq next-generation sequencing to analyze the 16SrRNA and ITS rDNA of endophytes in 24 samples of Actinidia arguta stem tissues across different seasons. The results revealed a high richness and diversity of endophytes in Actinidia arguta, with significant seasonal variations in microbial community richness. This study identified 897 genera across 36 phyla for bacteria and 251 genera across 8 phyla for fungi. Notably, 69 bacterial genera and 19 fungal genera significantly contributed to the differences in community structure across seasons. A distinctive feature of coexistence in the endophytic community, both specific and conservative across different seasons, was observed. The bacterial community in winter demonstrated significantly higher richness and diversity compared to the other seasons. Environmental factors likely influence the optimal timing for endophyte colonization. Solar radiation, temperature, precipitation, and relative humidity significantly impact the diversity of endophytic bacteria and fungi. In addition, seasonal variations show significant differences in the nutritional modes of fungal endophytes and the degradation, ligninolysis, and ureolysis functions of bacterial endophytes. This study elucidates the potential role of endophytes in assisting Actinidia arguta in adapting to seasonal changes and provides a theoretical basis for further exploration of functional microbial strains.

19.
Curr Issues Mol Biol ; 46(1): 430-449, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38248329

RESUMEN

As transcription factors derived from transposase, FAR-RED IMPAIRED RESPONSE1 (FAR1) and its homolog FHY3 play crucial roles in the regulation of light signaling and various stress responses by coordinating the expression of downstream target genes. Despite the extensive investigation of the FAR1/FHY3 family in Arabidopsis thaliana and other species, a comprehensive examination of these genes in maize has not been conducted thus far. In this study, we employed a genomic mining approach to identify 16 ZmFAR1 genes in the maize inbred line B73, which were further classified into five subgroups based on their phylogenetic relationships. The present study characterized the predicted polypeptide sequences, molecular weights, isoelectric points, chromosomal distribution, gene structure, conserved motifs, subcellular localizations, phylogenetic relationships, and cis-regulatory elements of all members belonging to the ZmFAR1 family. Furthermore, the tissue-specific expression of the 16 ZmFAR1 genes was analyzed using RNA-seq, and their expression patterns under far-red light conditions were validated in the ear and tassel through qRT-qPCR. The observed highly temporal and spatial expression patterns of these ZmFAR1 genes were likely associated with their specific functional capabilities under different light conditions. Further analysis revealed that six ZmFAR1 genes (ZmFAR1-1, ZmFAR1-10, ZmFAR1-11, ZmFAR1-12, ZmFAR1-14, and ZmFAR1-15) exhibited a response to simulated shading treatment and actively contributed to the development of maize ears. Through the integration of expression quantitative trait loci (eQTL) analyses and population genetics, we identified the presence of potential causal variations in ZmFAR1-14 and ZmFAR1-9, which play a crucial role in regulating the kernel row number and kernel volume weight, respectively. In summary, this study represents the initial identification and characterization of ZmFAR1 family members in maize, uncovering the functional variation in candidate regulatory genes associated with the improvement of significant agronomic traits during modern maize breeding.

20.
Biomed Pharmacother ; 170: 116027, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113630

RESUMEN

Shen Qi Wan (SQW) has been proven to exert anti-inflammatory effects in the kidneys of CKD models accompanied by unclear therapeutic mechanisms. This study aims to evaluate the kidney-protective and anti-inflammatory effects of SQW and to elucidate its fundamental mechanisms for CKD treatment. Firstly, the main active components of SQW were identified by UPLC-Q-TOF/MS technique. Subsequently, we evaluated inflammatory factors, renal function and renal pathology changes following SQW treatment utilizing adenine-induced CKD mice and aquaporin 1 knockout (AQP1-/-) mice. Additionally, we conducted RNA-seq analysis and bioinformatics analysis to predict the SQW potential therapeutic targets and anti-nephritis pathways. Simultaneously, WGCNA analysis method and machine learning algorithms were used to perform a clinical prognostic analysis of potential biomarkers in CKD patients from the GEO database and validated through clinical samples. Lipopolysaccharide-induced HK-2 cells were further used to explore the mechanism. We found that renal collagen deposition was reduced, serum inflammatory cytokine levels decreased, and renal function was improved after SQW intervention. It can be inferred that ß-defensin 1 (DEFB1) may be a pivotal target, as confirmed by serum and renal tissue samples from CKD patients. Furthermore, SQW assuages inflammatory responses by fostering AQP1-mediated DEFB1 expression was confirmed in in vitro and in vivo studies. Significantly, the renal-protective effect of SQW is to some extent attenuated after AQP1 gene knockout. SQW could reduce inflammatory responses by modulating AQP1 and DEFB1. These findings underscore the potential of SQW as a promising contender for novel prevention and treatment strategies within the ambit of CKD management.


Asunto(s)
Nefritis , Insuficiencia Renal Crónica , beta-Defensinas , Humanos , Ratones , Animales , Acuaporina 1/genética , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Riñón/patología , Nefritis/patología , Antiinflamatorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...