Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Chemosphere ; 346: 140615, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931712

RESUMEN

Nitrogen dioxide (NO2) plays a critical role in terms of air quality, human health, ecosystems, and its impact on climate change. While the crucial roles of the vertical structure of NO2 have been acknowledged for some time, there is currently limited knowledge about this aspect in China. The Geostationary Environment Monitoring Spectrometer (GEMS) is the world's first geostationary satellite instrument capable of measuring the hourly columnar amount of NO2. The study presented here introduces the use of mixing height for NO2 in the atmosphere. A thorough examination of spatiotemporal variations in the mixing height of NO2 was conducted using data from both the GEMS and ground-based air quality monitoring networks. A random forest model based on machine learning techniques was utilized to examine how meteorological parameters affect the mixing height of NO2. The results of our study reveal a notable seasonal fluctuation in the mixing height of NO2, with the highest values observed during the summer and the lowest values during the winter. Additionally, there was an increasing diurnal trend from early morning to mid-afternoon. Moreover, the study discovered elevated NO2 mixing heights in the dry regions of northern China. The results also indicated a positive correlation between the mixing height of NO2 and temperature and wind speed, while negative associations were found with relative humidity and air pressure. The machine learning model's predicted NO2 mixing heights were in good agreement with the measurement-based outcomes, as evidenced by a coefficient of determination (R2) value of 0.96 (0.84 for the 10-fold cross-validation). These findings emphasize the noteworthy influence of meteorological variables on the vertical distribution of NO2 in the atmosphere and enhance our comprehension of the three-dimensional variations in NO2.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , Ecosistema , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , China , Aprendizaje Automático
2.
Membranes (Basel) ; 13(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36984751

RESUMEN

At present, the types of pollutants in wastewater are more and more complicated, however, the multifunctional membrane materials are in short supply. To prepare a membrane with both high efficient oil-in-water emulsion separation performance and photocatalytic degradation performance of organic dyes, the bifunctional separation membrane was successfully prepared by electrostatic spinning technology of PVDF/PEMA and in situ deposition of anatase TiO2 nanoparticles containing Ti3+ and oxygen vacancies (Ov). The prepared composite membrane has excellent hydrophilic properties (WCA = 15.65), underwater oleophobic properties (UOCA = 156.69), and photocatalytic performance. These composite membranes have high separation efficiency and outstanding anti-fouling performance, the oil removal efficiency reaches 98.95%, and the flux recovery rate (FRR) reaches 99.19% for soybean oil-in-water emulsion. In addition, the composite membrane has outstanding photocatalytic degradation performance, with 97% and 90.2% degradation of RhB and AG-25 under UV conditions, respectively. Several oil-in-water separation and dye degradation experiments show that the PVDF composite membrane has excellent reuse performance. Based on these results, this study opens new avenues for the preparation of multifunctional reusable membranes for the water treatment field.

3.
Sci Total Environ ; 872: 162091, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36758704

RESUMEN

Dust particles originating from arid desert regions can be transported over long distances, presenting severe risks to climate, environment, social economics, and human health at the source and downwind regions. However, there has been a dearth of continuous diurnal observations of vertically resolved mass concentration and optical properties of dust aerosols, which hinders our understanding of aerosol mixing, stratification, aerosol-cloud interactions, and their impacts on the environment. To fill the gap of the insufficient observations, to the best of our knowledge, this work presents the first high-spectral-resolution lidar (HSRL) observation providing days of continuous profiles of the mass concentration, along with particle linear depolarization ratio (PLDR), backscattering coefficient, extinction coefficient and lidar ratio (LR), simultaneously. We present the results of two strong dust events observed by HSRL over Beijing in 2021. The maximum particle mass concentrations reached (1.52 ± 3.5) x103 µg/m3 and (19.48 ± 0.36) x103 µg/m3 for the two dust events, respectively. The retrieved particle mass concentrations and aerosol optical depth (AOD) agree well with the observation from the surface PM10 concentrations and sun photometer with correlation coefficients of 0.90 and 0.95, respectively. The intensive properties of PLDR and LR of the dust aerosols are 0.31 ± 0.02 and 39 ± 7 sr at 532 nm, respectively, which are generally close to those obtained from observations in the downwind areas. Moreover, inspired by the observations from HSRL, a universal analytical relationship is discovered to evaluate the proportion of dust aerosol backscattering, extinction, AOD, and mass concentration using PLDR. The universal analytical relationship reveals that PLDR can directly quantify dust aerosol contribution, which is expected to further expand the application of polarization technology in dust detection. These valuable observations and findings further our understanding of the contribution of dust aerosol to the environment and help supplement dust aerosol databases.

4.
RSC Adv ; 12(55): 35543-35555, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36540403

RESUMEN

The anti-fouling performance of membranes is an important performance in the separation of oil/water. However, the membrane with anti-fouling performance will also have surface scaling phenomenon when it runs for a long time. Therefore, there is still a great demand for stain-resistant membranes with good self-cleaning ability and high flux recovery rate. Based on this, this paper firstly prepared a hydrophilic membrane with carboxyl group and carboxyl ion by blending poly(ethylene-alt-maleic anhydride) (PEMA) and polyvinylidene fluoride (PVDF), and then prepared a self-cleaning composite membrane by in situ mineralization of ß-FeOOH particles on the surface of the membrane for efficient oil-in-water emulsion separation. A large number of -COOH/COO- and ß-FeOOH particles on the membrane surface make the composite membrane have strong hydrophilic properties (WCA = 20.34°) and underwater superoleophobicity (UOCA = 155.10°). These composite membranes have high separation efficiency (98.8%) and high flux (694.56 L m-2 h-1 bar-1) for soybean oil-in-water emulsion. Importantly, the as-prepared membrane shows excellent flux recovery rate (over 99.93%) attributed to the robust photo-Fenton catalytic activity of ß-FeOOH, and the ß-FeOOH is chemically bonded to the as-prepared membrane, which makes the as-prepared membrane have good reusability. This work provides hope for the application of self-cleaning membranes in the construction of anti-fouling membranes for wastewater remediation.

5.
ACS Omega ; 7(44): 39750-39759, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36385851

RESUMEN

Structural coloration of photonic crystals (PCs) is considered an ecological and environmental way to achieve colorful textiles. However, constructing PCs with obvious structural colors on traditional flexible yarns is still a great challenge. As a secondary structure that forms textiles, compared with fibers and fabrics, the yarns are rougher, hindering the construction of regular PCs. In this work, the flexible acrylic yarns with vivid structural colors, named PC-based structural color yarns, were prepared by constructing regular PCs via assembling poly(styrene-butyl acrylate-methacrylate) (P(St-BA-MAA)) colloidal microspheres on yarns. Specifically, the properties of P(St-BA-MAA) colloidal microspheres were investigated. The PCs with better structural stability and obvious structural colors were prepared by presetting the acrylic adhesive layer on yarns. Moreover, the color durability and color regulation methods of prepared PC-based structural color yarns were evaluated and discussed. The results showed that the P(St-BA-MAA) colloidal microspheres exhibited even particle sizes, excellent monodispersity, and a typical hard core-soft shell structure. And the glass-transition temperature (T g) of the microspheres was tested to be about 65.6 °C. The cationic acrylate regarded as a pretreatment agent could not only improve the combination between the PC layers and the yarns by acting as a "bridge" but also enhance the structural color effect by smoothing the yarn surface. The results showed that when the mass fraction of cationic acrylate was 3 wt %, the microspheres were beneficial to access regular PCs with obvious structural colors. The PCs with bright structural colors could be constructed on black acrylic yarns, and the colors of yarns were still bright after rubbing and washing tests, indicating that the prepared PC-based structural color yarns have good color fastness. Moreover, the color hue of PC-based structural color yarns could be regulated by adjusting the particle sizes and viewing angles. This study provides strategic support for the structural coloration of flexible materials.

6.
Atmos Pollut Res ; 13(10): 101549, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36092859

RESUMEN

Photochemical regime for ozone (O3) formation is complicated in the sense that reducing emission of nitrogen oxides (NOx) may increase O3 concentration. The lockdown due to COVID-19 pandemic affords a unique opportunity to use real observations to explore the O3 formation regime and the effectiveness of NOx emission control strategies. In this study, observations from ground networks during the lockdowns were used to assess spatial disparity of the Ratio of Ozone Formation (ROF) for nitrogen dioxide (NO2) reduction in the Greater Bay Area (GBA) of China. The health risk model from Air Quality Health Index (AQHI) system in Hong Kong was adopted to evaluate the risk tradeoffs between NO2 and O3. Results show that the levels of O3 increase and NO2 reduction were comparable due to high ROF values in urban areas of central GBA. The ozone reactivity to NO2 reduction gradually declined outwards from central GBA. Despite the O3 increases, the NOx emission controls reduced the Integrated Health Risk (IHR) of NO2 and O3 in most regions of the GBA. When risk coefficients from the AQHI in Canada or the global review were adopted in the risk analyses, the results are extremely encouraging because the controls of NOx emission reduced the IHR of NO2 and O3 almost everywhere in the GBA. Our results underscore the importance of using a risk-based method to assess the effectiveness of emission control measures and the overall health benefit from NOx emission controls in the GBA.

7.
World Neurosurg ; 165: 147-153, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779748

RESUMEN

BACKGROUND: Contralateral subdural effusion (CSE) after decompressive craniectomy (CSEDC) is occasionally observed. Cranioplasty is routinely performed for reconstruction and has recently been associated with improving contralateral subdural effusion. We sought to systematically review all available literature and evaluate the effectiveness of cranioplasty for CSE. METHODS: A PubMed, Web of Science, and Google Scholar search was conducted for preferred reporting items following the guidelines of systematic review and meta-analysis, including studies reporting patients who underwent cranioplasty because of CSEDC. RESULTS: The search yielded 8 articles. A total of 56 patients ranging in age from 21 to 71 years developed CSEDC. Of them, 32 patients underwent cranioplasty. Eighteen cases with symptomatic CSE underwent cranioplasty alone, 2 cases received Ommaya drainage later because of a recurrence of CDC, and 1 case underwent a ventriculoperitoneal shunt because the CSE did not resolve completely and the ventricle was dilated again. The symptoms of 14 cases lessened without recurrence after simultaneous cranioplasty and drainage or a shunt. The total success rate (CSE disappeared without recurrence) was 90.6% for patients who underwent cranioplasty; however, the total incidence of hydrocephalus was 40.1%. CONCLUSIONS: This review suggests that cranioplasty is effective for the treatment of CSEDC, particularly intractable cases, but early cranioplasty may be more effective. In addition, hydrocephalus is fairly common after cranioplasty and requires further treatment.


Asunto(s)
Craniectomía Descompresiva , Hidrocefalia , Efusión Subdural , Adulto , Anciano , Craniectomía Descompresiva/efectos adversos , Humanos , Hidrocefalia/etiología , Persona de Mediana Edad , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Efusión Subdural/cirugía , Resultado del Tratamiento , Adulto Joven
8.
Proc Natl Acad Sci U S A ; 119(10): e2110756119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235447

RESUMEN

SignificanceAerosol-cloud interaction affects the cooling of Earth's climate, mostly by activation of aerosols as cloud condensation nuclei that can increase the amount of sunlight reflected back to space. But the controlling physical processes remain uncertain in current climate models. We present a lidar-based technique as a unique remote-sensing tool without thermodynamic assumptions for simultaneously profiling diurnal aerosol and water cloud properties with high resolution. Direct lateral observations of cloud properties show that the vertical structure of low-level water clouds can be far from being perfectly adiabatic. Furthermore, our analysis reveals that, instead of an increase of liquid water path (LWP) as proposed by most general circulation models, elevated aerosol loading can cause a net decrease in LWP.

9.
Neurochem Res ; 47(6): 1651-1663, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35211828

RESUMEN

Spinal cord injury (SCI) can cause secondary brain changes, leading to hypomyelination in the dorsolateral prefrontal cortex (dlPFC). Some studies have shown that notch signaling pathway activation can regulate oligodendrocyte maturation and myelination. The aim of this study was to investigate whether inhibition of the Notch signaling pathway can alleviate hypomyelination in the dlPFC caused by SCI. Moreover, we further investigated whether the changes in myelination in the dlPFC are associated with neuropathic pain following SCI. We established a mouse model of SCI and observed the changes in mechanical and thermal hyperalgesia. Western blotting and immunofluorescence were used to analyze the changes in myelination in the dlPFC. The results indicated the existence of a relationship between activation of the Notch signaling pathway and hypomyelination in the dlPFC and confirmed the existence of a relationship between hypomyelination in the dlPFC and decreases in mechanical and thermal hyperalgesia thresholds. In conclusion, these results suggested that the Notch signaling pathway is activated after SCI, leading to hypomyelination in the dlPFC, and that DAPT can inhibit the Notch signaling pathway and improve mechanical and thermal hyperalgesia thresholds. Our findings provide a new target for the treatment of neuropathic pain caused by SCI.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Animales , Encéfalo/metabolismo , Hiperalgesia/etiología , Ratones , Neuralgia/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo
10.
World Neurosurg ; 160: e159-e168, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34979285

RESUMEN

OBJECTIVE: Neuroimaging studies have shown that spinal cord injury (SCI) may lead to significant brain changes that are the key factors affecting functional recovery. However, little is known about the molecular and cellular biological mechanisms of these brain changes. The aim of this study was to investigate the molecular and cellular biological changes in the cerebellum after SCI. METHODS: A total of 72 mice were randomly divided into 2 groups: sham group and SCI group. A mouse model of SCI was established by an aneurysm clip. Pathological examinations of the injured site were performed by hematoxylin and eosin staining and immunohistochemical. Western blot and immunohistochemical were used to determine the effect of SCI on the differentiation and maturation of NG2 cells. RESULTS: Compared with the sham group, the spinal cord tissue structure was disrupted and the motor function decreased significantly in the SCI group; the number of NG2 cells in the ansiform lobule crus Ⅰ increased on the 7th and 14th days, whereas the expression of oligodendrocyte transcription factor 2, myelin basic protein, and proteolipid protein decreased on the 7th and 14th days after SCI. These results showed that the differentiation and maturation of NG2 cells in the ansiform lobule crus Ⅰ were inhibited after SCI, resulting in the decrease of the formation of mature oligodendrocytes. CONCLUSIONS: These results indicate that SCI can lead to secondary changes in the cerebellum, which may affect the functional recovery. These findings may be used as biomarkers to evaluate the secondary changes in the brain after SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Animales , Diferenciación Celular , Cerebelo/patología , Humanos , Ratones , Oligodendroglía , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Médula Espinal/patología
11.
Cell Mol Neurobiol ; 42(7): 1-11, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33826017

RESUMEN

NG2 cells are highly proliferative glial cells that can self-renew or differentiate into oligodendrocytes, promoting remyelination. Following demyelination, the proliferative and differentiation potentials of NG2 cells increase rapidly, enhancing their differentiation into functional myelinating cells. Levels of the transcription factors Olig1 and Olig2 increase during the differentiation of NG2 cells and play important roles in the development and repair of oligodendrocytes. However, the ability to generate new oligodendrocytes is hampered by injury-related factors (e.g., myelin fragments, Wnt and Notch signaling components), leading to failed differentiation and maturation of NG2 cells into oligodendrocytes. Here, we review Notch signaling as a negative regulator of oligodendrocyte differentiation and discuss the extracellular ligands, intracellular pathways, and key transcription factors involved.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Enfermedades Desmielinizantes , Animales , Diferenciación Celular , Humanos , Vaina de Mielina , Proteínas del Tejido Nervioso , Oligodendroglía , Transducción de Señal , Factores de Transcripción
12.
World Neurosurg ; 158: e856-e864, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34838764

RESUMEN

BACKGROUND: Neuroinflammation is an important secondary aggravating factor in spinal cord injury (SCI). Inhibition of the inflammatory response is critical for SCI treatment. Glycyrrhizic acid (GA) is an anti-inflammatory drug, but its utility for SCI is unclear. This study aimed to evaluate the effects of GA on inflammation after SCI and the underlying mechanism. METHODS: Cell counting kit-8 assays were performed to assess the viability of highly aggressively proliferating immortalized cells that had been treated with lipopolysaccharide (LPS) and/or GA. Reverse transcription quantitative polymerase chain reaction and Western blotting were performed to assess expression of high mobility group box-1 protein (HMGB1), ionized calcium binding adaptor molecule 1, and inflammatory factors in vitro and in vivo. GA (100 mg/kg) was intraperitoneally injected into rats. Anti-inflammatory effects of GA were analyzed in SCI tissues. p38/Jun N-terminal kinase signaling pathway proteins were analyzed by Western blotting. RESULTS: Cell counting kit-8 assay results showed that treatment with 100 ng/mL LPS for 12 hours was optimal. After LPS treatment, highly aggressively proliferating immortalized cells were activated; messenger RNA expression levels of HMGB1 and inflammatory factors were increased. GA significantly inhibited LPS-induced HMGB1 expression and inflammatory responses, as determined by reverse transcription quantitative polymerase chain reaction and Western blotting. Transfection with an HMGB1-overexpression plasmid reversed the anti-inflammatory effects of GA. In addition, intraperitoneal injection of GA (100 mg/kg) into rats for 3 days significantly reduced expression levels of HMGB1 and inflammatory factors after SCI in vivo. GA reduced phosphorylation, but not levels, of p38 and Jun N-terminal kinase proteins. CONCLUSIONS: GA attenuates the inflammatory response after SCI by inhibiting HMGB1 through the p38/JNK signaling pathway and thus has therapeutic potential for SCI.


Asunto(s)
Proteína HMGB1 , Traumatismos de la Médula Espinal , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Proteína HMGB1/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos , Ratas , Transducción de Señal , Traumatismos de la Médula Espinal/complicaciones
13.
Environ Pollut ; 290: 118032, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467886

RESUMEN

The annual mean PM2.5 mass concentration has decreased because of the stringent emission controls implemented in Beijing, China in recent years, whereas the nitrate NO3- mass fraction in PM2.5 increases gradually. Low-visibility events occur frequently even though PM2.5 pollution has been mitigated significantly, with the daily mean PM2.5 mass concentration mostly less than 75 µg/m3. In this study, the non-linear relationship was analyzed between atmospheric visibility and PM2.5 based on chemical composition from a two-year field observation. Our results showed that NO3- became the main constituent of PM2.5, especially during the haze pollution episodes. A localized parameterization scheme was proposed between the atmospheric extinction coefficient (σext) and major chemical constituents of PM2.5 by multiple linear regression (MLR). The contribution of NO3- to σext increased with increasing air pollution, and NO3- became the most important contributor for PM2.5 above 75 µg/m3. The visibility decreased with increasing NO3- mass fraction for the same PM2.5 mass concentration when PM2.5 was above 20 µg/m3. The hygroscopicity of PM2.5 increased with increasing mass fraction of hygroscopic NO3-. These results stressed the importance of reducing particulate NO3- and its precursors (for instance, NH3) through effective emission control measures as well as the tightening of PM2.5 standards to further improve air quality and visibility in Beijing.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , China , Monitoreo del Ambiente , Nitratos , Material Particulado/análisis , Estaciones del Año
14.
Sci Total Environ ; 799: 149423, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34426314

RESUMEN

Aerosol liquid water content (ALWC) has significant effects on aerosol optical properties, radiative forcing, and the development of severe pollution events. In this study, the vertical distribution and temporal evolution of ALWC were determined through linear particle depolarization measured by a high spectral resolution lidar (HSRL) from December 9 to 12, 2020. Near-surface ALWC datasets retrieved by HSRL were validated by measurements from a three-wavelength humidified nephelometer. The ALWC datasets derived by two methods were highly correlated (R = 0.94, N = 192), illustrating the feasibility of retrieving the ALWC by HSRL. A positive correlation between the ALWC and the enhancement of aerosol scattering coefficient F calculated by the scattering coefficient at 525 nm measured in dry and ambient states proves the reliability of the ALWC obtained from HSRL. However, previous research has implied that fine mode particles dominating the total aerosol loading are required to precisely retrieve the ALWC, while the uncertainty of ALWC data will be large when the particle depolarization ratio is larger than 0.07. When it is less than 0.07, the ALWC derived from HSRL has high precision. By analyzing the aerosol property measurements (e.g., PM2.5, PM10, particle depolarization ratio, and scattering coefficient) near the surface, we found that ALWC contributes greatly to the deterioration of visibility. The variability of optical parameters in the vertical direction showed that ALWC significantly promotes the enhancement of aerosol extinction coefficients. Moreover, high ALWC significantly increases the scattering capacity of aerosols, leading to an enhanced cooling effect on the climate system.


Asunto(s)
Monitoreo del Ambiente , Agua , Aerosoles/análisis , Clima , Reproducibilidad de los Resultados
15.
Neuropsychiatr Dis Treat ; 17: 2191-2198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262279

RESUMEN

PURPOSE: Depression is associated with an inflammatory immune response. There are minimal data regarding the association of inflammatory markers with depression in patients with spinal cord injury (SCI). We aimed to investigate the association of inflammatory markers with depression in middle-aged and elderly SCI patients. METHODS: Data were obtained from the Midlife in the United States (MIDUS) study, a longitudinal study of a representative sample of the adult population. We analyzed the associations of serum levels of fibrinogen, interleukin-6, tumor necrosis factor-ɑ, and C-reactive protein with depressive symptoms. RESULTS: The median participant age was 52.5 years; 44.9% of participants were men. Multivariate linear regression analyses showed that an increased serum fibrinogen level (Sß = 0.114, p = 0.005) was associated with higher Centre for Epidemiological Studies-Depression (CES-D) scores after adjustment for age, sex, body mass index (BMI), ethnicity, education, marital status, smoking, alcohol use, exercise, perceived stress score, and cardiovascular disease (CVD). Multivariate logistic regression analysis showed that an increased serum fibrinogen level was independently associated with a history of depression (odds ratio [OR] = 1.240, 95% confidence interval [CI] = 1.103-1.997, p = 0.012) and depressive symptoms (OR = 1.884, 95% CI = 1.165-2.499, p < 0.001; CES-D score ≥ 16) after adjustment for confounding factors. Stratified analysis revealed that the association between serum fibrinogen level and depressive symptoms was affected by antidepressant use. CONCLUSION: Serum fibrinogen level had a significantly positive association with depressive symptoms in middle-aged and elderly patients with SCI. Future longitudinal cohort studies should evaluate the possible use of serum fibrinogen for diagnosis of depression in SCI patients.

16.
World Neurosurg ; 154: e29-e38, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34271150

RESUMEN

BACKGROUND: Depression induced by spinal cord injury (SCI) has been demonstrated in clinical and experimental studies; it significantly impacts patients' lives and may be associated with changes in the hippocampus. However, the biological mechanisms underlying depression after SCI are unknown. The mitogen-activated protein kinase (MAPK) signaling pathway participates in potential mechanisms of depression; it is unknown whether this pathway plays a role in SCI-induced depression. METHODS: We applied an animal model of depression induced by SCI, established using an aneurysm clip, to determine whether MAPK activation in the hippocampus is associated with depression-like behavior. RESULTS: SCI led to depression-like behavior, such as anhedonia in the sucrose preference test, decreased number of crossings in the open field test, decreased body weight, and decreased immobility time in the forced swim test. Western blot analysis further showed that SCI significantly increased the levels of phosphorylated p38 MAPK and cleaved caspase-3 in the hippocampus and inhibited the phosphorylation of extracellular signal-related kinase 1/2 and c-Jun N-terminal kinase 1/2. In addition, there were significant negative correlations between depression-like behavior and phosphorylated extracellular signal-related kinase 1/2 and positive correlations between depression-like behavior and phosphorylated p38 MAPK and cleaved caspase-3. CONCLUSIONS: These findings suggest that the MAPK pathway in the rat hippocampus may be involved in the pathophysiology of depression induced by SCI.


Asunto(s)
Depresión/psicología , Hipocampo/fisiopatología , Sistema de Señalización de MAP Quinasas , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/psicología , Anhedonia , Animales , Conducta Animal , Caspasa 3/metabolismo , Masculino , Actividad Motora , Ratas , Ratas Sprague-Dawley , Natación/psicología , Pérdida de Peso , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Neurosci Lett ; 756: 135965, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34022262

RESUMEN

Neuropathic pain (NP) is caused by direct or indirect damage to the nervous system and is a common symptom of many diseases. The mechanisms underlying the onset and persistence of NP are unclear. Therefore, research concerning these mechanisms has become an important focus in the medical field. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. BDNF is an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity, which are essential for nerve maintenance and repair. However, BDNF is upregulated in the spinal dorsal horn and can promote NP by activating glial cells, reducing inhibitory functions and enhancing excitement after nociceptive stimulation. This review considers the relationship between NP and BDNF signaling in the spinal dorsal horn and discusses potentially related pathological mechanisms.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuralgia/metabolismo , Células del Asta Posterior/metabolismo , Transducción de Señal/fisiología , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Humanos
18.
Environ Sci Technol ; 54(6): 3129-3137, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32092257

RESUMEN

Aerosol liquid water content (ALWC) plays fundamental roles in atmospheric radiation and chemical processes. However, there is little information about ALWC vertical distribution due to the lack of sufficient measurement. In this study, a novel method to retrieve ALWC using a polarization lidar is proposed. By analyzing lidar measurement combined with in situ chemical composition measurements at the surface, the particle linear depolarization ratio δp is found to be well correlated with the liquid water mass fraction. The method is built upon a valid relationship between δp and the ratio of ALWC to the particle backscatter coefficient. ALWC can be retrieved with a relative error of 30% with this method. A case study shows that the ALWC in upper levels of the boundary layer may be different from that at the ground, suggesting the importance of measuring ALWC vertical profiles during haze episodes. The study proves that polarization lidars have the potential to retrieve vertical distributions of ALWC which will benefit studies on haze formation.


Asunto(s)
Monitoreo del Ambiente , Agua , Aerosoles
19.
Environ Res ; 182: 109120, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31927247

RESUMEN

Human exposure to PM2.5, represented by population-weighted mean PM2.5 concentration (cρ), declines under three conditions: (1) mean PM2.5 concentration declines, (2) PM2.5 concentration within urban areas goes through more of a decrease than within rural areas, or (3) city planning relocates people into cleaner areas. Decomposing these effects on human exposure is essential to guide future environmental policies. The lack of ground PM2.5 observations limits the assessment of human exposure to PM2.5 over China. This study proposed a novel diagnostic framework using satellite observations to decompose the variation in cρ resulting from change in the mean PM2.5 concentration, spatial difference in PM2.5 change, and demographic change. In this framework, we decomposed cρ into mean PM2.5 concentration (c0) and pollution-population-coincidence induced PM2.5 exposure (PPCE). We then used this framework to decompose the variation in cρ over China within three recent Five-Year Plans (FYPs) (2001-2015). The results showed that the decline in c0 reduced cρ in most provinces within the eleventh and twelfth FYPs. The spatial difference in PM2.5 change reduced the PPCE and cρ in most provinces within the tenth and twelfth FYPs, with the most substantial reduction rate of -3.64 µg m-3·yr-1 in Tianjin within the twelfth FYP. Rural-to-urban migration resulting from rapid urbanization, however, increased the PPCE and cρ (by as much as 0.22 µg m-3·yr-1) in all provinces except Taiwan within all three FYPs. The demographic change reduced cρ in Taiwan because of the migration of population into less polluted areas. To better reduce human exposure, it is recommended that control efforts further target populous residential areas and urbanization planning relocates people into less polluted areas. Our decomposition framework paves a new way to decompose the human exposure to other air pollutants in China and other regions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado , China , Demografía , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Humanos , Nave Espacial , Taiwán
20.
Environ Sci Technol ; 53(6): 2990-3000, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30813717

RESUMEN

Variations in aerosol characteristics play an essential role in satellite remote sensing of PM2.5 concentrations. The lack of measurement of aerosol characteristics, however, limits the assessment of their effects. This study presented an observation-based model that directly considered the effects of aerosol characteristics. In this model, we used an integrated humidity coefficient (γ') and an integrated reference value ( K) to delineate the effects of aerosol characteristics. We then investigated the effects of the long-term variations in aerosol characteristics on satellite remote sensing of PM2.5 concentration in Hong Kong from 2004 to 2012. The results show that the γ' value peaked in 2009 because the percentages of highly hygroscopic components (e.g., sulfate and nitrate) in aerosols reached their peaks. The K value increased from 2004 to 2011 because of the increasing percentages of strong light-extinction components (e.g., organic matter) and the decreasing fine mode fraction in aerosols. The accuracy of PM2.5 retrieval improved greatly after accounting for the long-term variations in aerosol characteristics (e.g., correlation coefficient increased from 0.56 to 0.80). The results underscore the need to incorporate the variations in aerosol characteristics in the PM2.5 estimation models.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles , Monitoreo del Ambiente , Hong Kong , Material Particulado , Tecnología de Sensores Remotos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...