Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Langmuir ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761148

RESUMEN

Colloidal quantum dots (QDs) have exceptional fluorescence properties. Overcoming aggregation-induced quenching and enhancing the fluorescence of colloidal QDs have remained a challenging issue in this field. In this study, composite hollow nanospheres composed of Au nanoparticles (NPs) and CdS:Ag-doped QDs were successfully constructed through controlled microemulsion-based cooperative assembly. This method harnessed the localized surface plasmon resonance (LSPR) effect of Au NPs nearby doped QDs, resulting in enhanced doped QD fluorescence and the observation of the Purcell effect. The composite hollow nanospheres show a fluorescence enhancement compared to that of the pure CdS:Ag QDs. The enhanced fluorescence was demonstrated to come from the synergetic enhancement of the absorption and emission transition of the doped QDs. This approach provides a feasible technological pathway to address the challenge of improving the fluorescence performance of the doped QDs.

2.
J Mol Med (Berl) ; 102(3): 415-433, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38340163

RESUMEN

Previous evidence has confirmed that branched-chain aminotransferase-1 (BCAT1), a key enzyme governing branched-chain amino acid (BCAA) metabolism, has a role in cancer aggression partly by restricting αKG levels and inhibiting the activities of the αKG-dependent enzyme family. The oncogenic role of BCAT1, however, was not fully elucidated in acute myeloid leukemia (AML). In this study, we investigated the clinical significance and biological insight of BCAT1 in AML. Using q-PCR, we analyzed BCAT1 mRNAs in bone marrow samples from 332 patients with newly diagnosed AML. High BCAT1 expression independently predicts poor prognosis in patients with AML. We also established BCAT1 knockout (KO)/over-expressing (OE) AML cell lines to explore the underlying mechanisms. We found that BCAT1 affects cell proliferation and modulates cell cycle, cell apoptosis, and DNA damage/repair process. Additionally, we demonstrated that BCAT1 regulates histone methylation by reducing intracellular αKG levels in AML cells. Moreover, high expression of BCAT1 enhances the sensitivity of AML cells to the Poly (ADP-ribose) polymerase (PARP) inhibitor both in vivo and in vitro. Our study has demonstrated that BCAT1 expression can serve as a reliable predictor for AML patients, and PARP inhibitor BMN673 can be used as an effective treatment strategy for patients with high BCAT1 expression. KEY MESSAGES: High expression of BCAT1 is an independent risk factor for poor prognosis in patients with CN-AML. High BCAT1 expression in AML limits intracellular αKG levels, impairs αKG-dependent histone demethylase activity, and upregulates H3K9me3 levels. H3K9me3 inhibits ATM expression and blocks cellular DNA damage repair process. Increased sensitivity of BCAT1 high expression AML to PARP inhibitors may be used as an effective treatment strategy in AML patients.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Antineoplásicos/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Reparación del ADN , Daño del ADN , Transaminasas/genética
3.
Int J Biol Macromol ; 261(Pt 1): 129669, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272424

RESUMEN

Programmed cell death (PCD), also known as regulatory cell death (RCD), is a process that occurs in all organisms and is closely linked to both normal physiological processes and disease states. Various signaling pathways, such as TP53, KRAS, NOTCH, hypoxia, and metabolic reprogramming, have been found to regulate RCD. Polysaccharides, which are essential natural products, have been the subject of extensive research in the fields of food, nutrition, and medicine due to their wide range of pharmacological effects. Studies have shown that polysaccharides have biological activities and the potential to target signal transduction pathways for the treatment of diseases. This paper provides a review of the mechanisms through which polysaccharides exert their therapeutic effects at different levels and explores the relationship between different types of RCD and human diseases. The aim of this review is to provide a theoretical basis for the further clinical use and application of polysaccharide bioactivities.


Asunto(s)
Apoptosis , Productos Biológicos , Humanos , Apoptosis/fisiología , Muerte Celular , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Transducción de Señal , Productos Biológicos/farmacología
4.
Nucleic Acids Res ; 52(2): e9, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38038259

RESUMEN

Proper cell fate determination relies on precise spatial and temporal genome-wide cooperation between regulatory elements (REs) and their targeted genes. However, the lengths of REs defined using different methods vary, which indicates that there is sequence redundancy and that the context of the genome may be unintelligible. We developed a method called MAE-seq (Massive Active Enhancers by Sequencing) to experimentally identify functional REs at a 25-bp scale. In this study, MAE-seq was used to identify 626879, 541617 and 554826 25-bp enhancers in mouse embryonic stem cells (mESCs), C2C12 and HEK 293T, respectively. Using ∼1.6 trillion 25 bp DNA fragments and screening 12 billion cells, we identified 626879 as active enhancers in mESCs as an example. Comparative analysis revealed that most of the histone modification datasets were annotated by MAE-Seq loci. Furthermore, 33.85% (212195) of the identified enhancers were identified as de novo ones with no epigenetic modification. Intriguingly, distinct chromatin states dictate the requirement for dissimilar cofactors in governing novel and known enhancers. Validation results show that these 25-bp sequences could act as a functional unit, which shows identical or similar expression patterns as the previously defined larger elements, Enhanced resolution facilitated the identification of numerous cell-specific enhancers and their accurate annotation as super enhancers. Moreover, we characterized novel elements capable of augmenting gene activity. By integrating with high-resolution Hi-C data, over 55.64% of novel elements may have a distal association with different targeted genes. For example, we found that the Cdh1 gene interacts with one novel and two known REs in mESCs. The biological effects of these interactions were investigated using CRISPR-Cas9, revealing their role in coordinating Cdh1 gene expression and mESC proliferation. Our study presents an experimental approach to refine the REs at 25-bp resolution, advancing the precision of genome annotation and unveiling the underlying genome context. This novel approach not only advances our understanding of gene regulation but also opens avenues for comprehensive exploration of the genomic landscape.


Asunto(s)
Genoma , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Ratones , Secuencias Reguladoras de Ácidos Nucleicos/genética , Cromatina , Genómica/métodos , Regulación de la Expresión Génica , Elementos de Facilitación Genéticos
5.
Cell Host Microbe ; 31(12): 2051-2066.e7, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37977141

RESUMEN

Pattern-recognition receptors (PRRs) mediate basal resistance to most phytopathogens. However, plant responses can be cell type specific, and the mechanisms governing xylem immunity remain largely unknown. We show that the lectin-receptor-like kinase LORE contributes to xylem basal resistance in Arabidopsis upon infection with Ralstonia solanacearum, a destructive plant pathogen that colonizes the xylem to cause bacterial wilt. Following R. solanacearum infection, LORE is activated by phosphorylation at residue S761, initiating a phosphorelay that activates reactive oxygen species production and cell wall lignification. To prevent prolonged activation of immune signaling, LORE recruits and phosphorylates type 2C protein phosphatase LOPP, which dephosphorylates LORE and attenuates LORE-mediated xylem immunity to maintain immune homeostasis. A LOPP knockout confers resistance against bacterial wilt disease in Arabidopsis and tomatoes without impacting plant growth. Thus, our study reveals a regulatory mechanism in xylem immunity involving the reversible phosphorylation of receptor-like kinases.


Asunto(s)
Arabidopsis , Receptores Mitogénicos , Fosforilación , Xilema/microbiología , Lectinas , Enfermedades de las Plantas , Inmunidad de la Planta
6.
Parasit Vectors ; 16(1): 382, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880803

RESUMEN

BACKGROUND: Aedes albopictus is an invasive vector of serious Aedes-borne diseases of global concern. Habitat management remains a critical factor for establishing a cost-effective systematic strategy for sustainable vector control. However, the community-based characteristics of Ae. albopictus habitats in complex urbanization ecosystems are still not well understood. METHODS: A large-scale investigation of aquatic habitats, involving 12 sites selected as representative of four land use categories at three urbanization levels, was performed in Guangzhou, China during 2015-2017. The characteristics and dynamics of these Ae. albopictus habitats were assessed using habitat-type composition, habitat preference, diversity indexes and the Route index (RI), and the temporal patterns of these indexes were evaluated by locally weighted scatterplot smoothing models. The associations of RI with urbanization levels, land use categories and climatic variables were inferred using generalized additive mixed models. RESULTS: A total of 1994 potential habitats and 474 Ae. albopictus-positive habitats were inspected. The majority of these habitats were container-type habitats, with Ae. albopictus showing a particularly higher habitat preference for plastic containers, metal containers and ceramic vessels. Unexpectedly, some non-container-type habitats, especially ornamental ponds and surface water, were found to have fairly high Ae. albopictus positivity rates. Regarding habitats, the land use category residential and rural in Jiangpu (Conghua District, Guangzhou) had the highest number of Ae. albopictus habitats with the highest positive rates. The type diversity of total habitats (H-total) showed a quick increase from February to April and peaked in April, while the H-total of positive habitats (H-positive) and RIs peaked in May. RIs mainly increased with the monthly average daily mean temperature and monthly cumulative rainfall. We also observed the accumulation of diapause eggs in the winter and diapause termination in the following March. CONCLUSIONS: Ecological heterogeneity of habitat preferences of Ae. albopictus was demonstrated in four land use categories at three urbanization levels. The results reveal diversified habitat-type compositions and significant seasonal variations, indicating an ongoing adaptation of Ae. albopictus to the urbanization ecosystem. H-positivity and RIs were inferred as affected by climatic variables and diapause behavior of Ae. albopictus, suggesting that an effective control of overwintering diapause eggs is crucial. Our findings lay a foundation for establishing a stratified systematic management strategy of Ae. albopictus habitats in cities that is expected to complement and improve community-based interventions and sustainable vector management.


Asunto(s)
Aedes , Ecosistema , Animales , Urbanización , Mosquitos Vectores , Óvulo , Larva
7.
Cell Stem Cell ; 30(8): 1072-1090.e10, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541212

RESUMEN

TET2 is recurrently mutated in acute myeloid leukemia (AML) and its deficiency promotes leukemogenesis (driven by aggressive oncogenic mutations) and enhances leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. Here, we show that Tet2 deficiency significantly facilitates leukemogenesis in various AML models (mediated by aggressive or less aggressive mutations) through promoting homing of LSCs into bone marrow (BM) niche to increase their self-renewal/proliferation. TET2 deficiency in AML blast cells increases expression of Tetraspanin 13 (TSPAN13) and thereby activates the CXCR4/CXCL12 signaling, leading to increased homing/migration of LSCs into BM niche. Mechanistically, TET2 deficiency results in the accumulation of methyl-5-cytosine (m5C) modification in TSPAN13 mRNA; YBX1 specifically recognizes the m5C modification and increases the stability and expression of TSPAN13 transcripts. Collectively, our studies reveal the functional importance of TET2 in leukemogenesis, leukemic blast cell migration/homing, and LSC self-renewal as an mRNA m5C demethylase.


Asunto(s)
Dioxigenasas , Leucemia Mieloide Aguda , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Médula Ósea/metabolismo , Carcinogénesis/metabolismo , Células Madre/metabolismo , Desmetilación , Células Madre Neoplásicas/metabolismo , Tetraspaninas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo
8.
Mol Carcinog ; 62(10): 1546-1562, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37493101

RESUMEN

Circular RNAs (circRNAs), a type of endogenous noncoding RNA (ncRNA), exert vital roles in leukemia progression and are promising prognostic factors. Here, we report a novel circRNA, circSLC25A13 (hsa_circ_0081188), which was increased in acute myeloid leukemia (AML) patients with poor overall survival (OS) comparing to patients with good prognosis. Knockdown of circSLC25A13 in AML cells inhibited proliferation and increased cell apoptosis in vitro and in vivo. Enhanced circSLC25A13 expression promoted the survival of AML cells. Mechanistically, circSLC25A13 played as a microRNA sponge of miR-616-3p, which inhibited the expression of adenylate cyclase 2 (ADCY2). Downregulation of miR-616-3p and overexpression of ADCY2 partially rescued circSLC25A13 deficient induced cell growth arrest. In summary, through competitive absorption of miR-616-3p and thereby upregulating ADCY2 expression, circSLC25A13 promoted AML progression. Moreover, circSLC25A13 may represent a potential novel biomarker for the prognosis of AML and offer a potential therapeutic target for AML treatment.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Humanos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética
9.
Hortic Res ; 10(6): uhad082, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37323235

RESUMEN

Fungal infection is a major cause of crop and fruit losses. Recognition of chitin, a component of fungal cell walls, endows plants with enhanced fungal resistance. Here, we found that mutation of tomato LysM receptor kinase 4 (SlLYK4) and chitin elicitor receptor kinase 1 (SlCERK1) impaired chitin-induced immune responses in tomato leaves. Compared with the wild type, sllyk4 and slcerk1 mutant leaves were more susceptible to Botrytis cinerea (gray mold). SlLYK4 extracellular domain showed strong binding affinity to chitin, and the binding of SlLYK4 induced SlLYK4-SlCERK1 association. Remarkably, qRT-PCR analysis indicated that SlLYK4 was highly expressed in tomato fruit, and ß-GLUCURONIDASE (GUS) expression driven by the SlLYK4 promoter was observed in tomato fruit. Furthermore, SlLYK4 overexpression enhanced disease resistance not only in leaves but also in fruit. Our study suggests that chitin-mediated immunity plays a role in fruit, providing a possible way to reduce fungal infection-related fruit losses by enhancing the chitin-induced immune responses.

10.
Br J Haematol ; 202(3): 566-577, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37231991

RESUMEN

Glutamine metabolic reprogramming in acute myeloid leukaemia (AML) cells contributes to the decreased sensitivity to antileukemic drugs. Leukaemic cells, but not their myeloid counterparts, largely depend on glutamine. Glutamate dehydrogenase 1 (GDH1) is a regulation enzyme in glutaminolysis. However, its role in AML remains unknown. Here, we reported that GDH1 was highly expressed in AML: high GDH1 was one of the independent negative prognostic factors in AML cohort. The dependence of leukaemic cells on GDH1 was proved both in vitro and in vivo. High GDH1 promoted cell proliferation and reduced survival time of leukaemic mice. Targeting GDH1 eliminated the blast cells and delayed AML progression. Mechanistically, GDH1 knockdown inhibited glutamine uptake by downregulating SLC1A5. Moreover, GDH1 invalidation also inhibited SLC3A2 and abrogated the cystine-glutamate antiporter system Xc- . The reduced cystine and glutamine disrupted the synthesis of glutathione (GSH) and led to the dysfunction of glutathione peroxidase-4 (GPX4), which maintains the lipid peroxidation homeostasis by using GSH as a co-factor. Collectively, triggering ferroptosis in AML cells in a GSH depletion manner, GDH1 inhibition was synthetically lethal with the chemotherapy drug cytarabine. Ferroptosis induced by inhibiting GDH1 provides an actionable therapeutic opportunity and a unique target for synthetic lethality to facilitate the elimination of malignant AML cells.


Asunto(s)
Glutamato Deshidrogenasa , Leucemia Mieloide Aguda , Ratones , Animales , Glutamina/metabolismo , Cistina , Citarabina , Glutatión/metabolismo
11.
Br J Haematol ; 202(4): 745-748, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37230766

RESUMEN

There have been reports of haematological cancer patients achieving spontaneous remission after being infected with the influenza A or SARS-COV-2 virus. Here, we present the first case of long-term complete remission (CR) induced by influenza A (IAV, H1N1 subtype) in a refractory AML patient and have functionally validated this finding in two different animal disease models. We observed a significant increase in the proportion of helper T cells in the patient after IAV infection. The levels of cytokines, including IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ and TNF-α, were higher in IAV-infected patients compared with control groups. These findings indicate that the anti-tumour effects induced by IAV are closely related to the modification of the immune response. Our study provides new evidence of the anti-tumour effects of IAV from a clinical practice perspective.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Leucemia Mieloide Aguda , Animales , Humanos , SARS-CoV-2
12.
J Transl Med ; 21(1): 115, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774517

RESUMEN

BACKGROUND: Spermatogenesis associated serine rich 2 like (SPATS2L) was highly expressed in homoharringtonine (HHT) resistant acute myeloid leukemia (AML) cell lines. However, its role is little known in AML. The present study aimed to investigate the function of SPATS2L in AML pathogenesis and elucidate the underlying molecular mechanisms. METHODS: Overall survival (OS), event-free survival (EFS), relapse-free survival (RFS) were used to evaluate the prognostic impact of SPATS2L for AML from TCGA database and ourcohort. ShRNA was used to knockdown the expression of SPATS2L. Apoptosis was assessed by flow cytometry. The changes of proteins were assessed by Western blot(WB). A xenotransplantation mice model was used to evaluate in vivo growth and survival. RNA sequencing was performed to elucidate the molecular mechanisms underlying the role of SPATS2L in AML. RESULTS: SPATS2L expression increased with increasing resistance indexes(RI) in HHT-resistant cell lines we had constructed. Higher SPATS2L expression was observed in intermediate/high-risk patients than in favorable patients. Meanwhile, decreased SPATS2L expression was observed in AML patients achieving complete remission (CR). Multivariate analysis showed high SPATS2L expression was an independent poor predictor of OS, EFS, RFS in AML. SPATS2L knock down (KD) suppressed cell growth, induced apoptosis, and suppressed key proteins of JAK/STAT pathway, such as JAK2, STAT3, STAT5 in AML cells. Inhibiting SPATS2L expression markedly enhanced the pro-apoptotic effects of traditional chemotherapeutics (Ara-c, IDA, and HHT). CONCLUSIONS: High expression of SPATS2L is a poor prognostic factor in AML, and targeting SPATS2L may be a promising therapeutic strategy for AML patients.


Asunto(s)
Leucemia Mieloide Aguda , Factor de Transcripción STAT5 , Animales , Ratones , Homoharringtonina/farmacología , Quinasas Janus/metabolismo , Quinasas Janus/farmacología , Quinasas Janus/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Pronóstico , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/farmacología , Factores de Transcripción STAT/uso terapéutico , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/farmacología , Humanos
13.
Cancer Med ; 12(7): 8319-8330, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36621846

RESUMEN

BACKGROUND: Identifying therapeutic targets and prognostic biomarkers significantly contributes to individualized treatment of acute myeloid leukemia (AML). Dihydropyrimidinase-like 2 (DPYSL2) expression was decreased in homoharringtonine (HHT)-resistant AML cells, which were established by our group. DPYSL2 plays an important role in axon growth and has oncogene effect in glioblastoma. However, little research has been conducted to investigate the function of DPYSL2 in AML pathogenesis. METHODS: Auto-docking was used to reveal the targeting relationship between HHT and DPYSL2. Overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS) were used to evaluate the prognostic impact of DPYSL2 for AML. ShRNA was used to knockdown the expression of SPATS2L. Apoptosis was assessed by flow cytometry. In vivo growth and survival were assessed using a xenotransplantation mice model. RNA sequencing was performed to elucidate the molecular mechanisms underlying the role of SPATS2L in AML and were confirmed by Western blot. RESULTS: We found DPYSL2 was the target of HHT. Next, we found AML cell lines and patients had higher DPYSL2 expression levels than the normal samples. Further multivariate analysis demonstrated that high DPYSL2 expression was an independent poor prognostic factor for OS, EFS, and RFS in AML. Inhibition of DPYSL2 expression suppressed cell growth, induced apoptosis in AML cell lines, and prolonged the survival of AML xenograft NCG mice. Through RNA-seq analysis from TCGA and our data, the JAK2/STAT3/STAT5-PI3K P85/AKT/GSK3b axis was thought to be the critical pathway in regulating DPYSL2 in AML development. CONCLUSIONS: We first time confirmed that DPYSL2 was a target of HHT and played an oncogene role in AML by regulating JAK/STAT signaling pathway. Therefore, DPYSL2 could serve as a novel prognostic marker and therapeutic target for AML treatment.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Animales , Ratones , Pronóstico , Homoharringtonina/farmacología , Homoharringtonina/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Biomarcadores , Línea Celular Tumoral
14.
Mar Drugs ; 22(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276639

RESUMEN

USP7 is highly expressed in a variety of tumors and is thought to play a major role in cancer development. However, there are no drugs available to target USP7, so there is a need to develop new USP7 inhibitors. In this study, AutoQSAR, multiple linear regression, and Naive Bayesian models were constructed using 543 compounds and used to analyze marine compounds. After selecting 240 small molecules for molecular docking with Maestro, MOE, and GOLD, better small molecules than the positive compound P217564 were screened. The molecular structure of "1, 2-dibromobenzene" was optimized to improve the binding effect of the protein, and 10 optimized compounds in ADMET performed well during the screening process. To study the dynamic combination of protein-ligand effect consistency with static molecular docking, 100ns molecular dynamics simulations of candidate compound 1008-1, reference compound P217564, and negative-positive GNE2917 were conducted. The results of molecular docking and molecular dynamics simulation analysis showed that compound 1008-1 maintained a stable conformation with the target protein. Thus, the comprehensive analysis suggests that compound 1008-1 could provide new possibilities for USP7 covalent inhibitor candidates.


Asunto(s)
Neoplasias , Relación Estructura-Actividad Cuantitativa , Humanos , Simulación del Acoplamiento Molecular , Peptidasa Específica de Ubiquitina 7 , Teorema de Bayes , Simulación de Dinámica Molecular
15.
Hortic Res ; 9: uhac207, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467273

RESUMEN

Production of reactive oxygen species (ROS) is an important immune response in plant multilayer defense mechanisms; however, direct modification of ROS homeostasis to breed plants with broad-spectrum resistance to disease has not yet been successful. In Arabidopsis, the receptor-like cytosolic kinase AtRIPK regulates broad-spectrum ROS signaling in multiple layers of the plant immune system. Upon treatment with immune elicitors, AtRIPK is activated and phosphorylates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which leads to ROS production. In this study, we identified an AtRIPK ortholog in tomatoes and generated knockdown mutants using CRISPR/Cas9 technology. Slripk mutants displayed reduced ROS production in response to representative immune elicitors and were susceptible to pathogenic bacteria and fungi from different genera, including Ralstonia solanacearum, Pectobacterium carotovorum, Botrytis cinerea, and Fusarium oxysporum, which are leaf and root pathogens with hemibiotrophic and necrotrophic infection strategies. In contrast, transgenic tomato plants overexpressing SlRIPK are more resistant to these pathogens. Remarkably, the slripk mutants and SlRIPK-overexpressing transgenic plants did not exhibit significant growth retardation or yield loss. These results suggest that overexpression of SlRIPK confers broad-spectrum disease resistance without a yield penalty in tomato plants. Our findings suggest that modifying ROS homeostasis by altering the regulatory components of ROS production in plant immunity could contribute to engineering or breeding broad-spectrum disease-resistant crops without yield penalty.

16.
Artículo en Inglés | MEDLINE | ID: mdl-36293742

RESUMEN

The scientific siting of urban parks is critical for sustainable urban environment development, and this study aimed to identify suitable areas for future urban parks in Nanjing, China. This study has integrated geographic information systems (GIS) and fuzzy hierarchical analysis (F-AHP) in order to evaluate the suitability of the site selection of urban parks in Nanjing, China. Different physical, natural, environmental, accessibility, and human activity factors were evaluated in order to assess the suitability of a park site. The results revealed that 5% were highly suitable for urban park site selection, 36% were more suitable, 32% were moderately suitable, 19% were less suitable, and 8% were unsuitable for urban park site selection. The findings suggest that the areas that are highly suitable for urban park placement are located in the western and eastern parts of Nanjing. Carbon storage was the most important factor in the suitability of urban park site selection, followed by the normalized difference vegetation index (NDVI) and the heat-island effect. The methodology that has been adopted in this study helps to improve the methodological framework of combining F-AHP and GIS; in addition, generating urban park site selection maps assists planners and decision-makers in making scientific site selection decisions.


Asunto(s)
Proceso de Jerarquía Analítica , Parques Recreativos , Humanos , Sistemas de Información Geográfica , China , Carbono
17.
J Exp Bot ; 73(12): 3913-3928, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262703

RESUMEN

Glandular trichomes of tobacco (Nicotiana tabacum) produce blends of acylsucroses that contribute to defence against pathogens and herbivorous insects, but the mechanism of assembly of these acylsugars has not yet been determined. In this study, we isolated and characterized two trichome-specific acylsugar acyltransferases that are localized in the endoplasmic reticulum, NtASAT1 and NtASAT2. They sequentially catalyse two additive steps of acyl donors to sucrose to produce di-acylsucrose. Knocking out of NtASAT1 or NtASAT2 resulted in deficiency of acylsucrose; however, there was no effect on acylsugar accumulation in plants overexpressing NtASAT1 or NtASAT2. Genomic analysis and profiling revealed that NtASATs originated from the T subgenome, which is derived from the acylsugar-producing diploid ancestor N. tomentosiformis. Our identification of NtASAT1 and NtASAT2 as enzymes involved in acylsugar assembly in tobacco potentially provides a new approach and target genes for improving crop resistance against pathogens and insects.


Asunto(s)
Nicotiana , Tricomas , Aciltransferasas/genética , Proteínas de Plantas/genética , Sacarosa , Nicotiana/genética , Tricomas/genética
18.
Nat Cell Biol ; 24(2): 205-216, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145225

RESUMEN

METTL16 has recently been identified as an RNA methyltransferase responsible for the deposition of N6-methyladenosine (m6A) in a few transcripts. Whether METTL16 methylates a large set of transcripts, similar to METTL3 and METTL14, remains unclear. Here we show that METTL16 exerts both methyltransferase activity-dependent and -independent functions in gene regulation. In the cell nucleus, METTL16 functions as an m6A writer to deposit m6A into hundreds of its specific messenger RNA targets. In the cytosol, METTL16 promotes translation in an m6A-independent manner. More specifically, METTL16 directly interacts with the eukaryotic initiation factors 3a and -b as well as ribosomal RNA through its Mtase domain, thereby facilitating the assembly of the translation-initiation complex and promoting the translation of over 4,000 mRNA transcripts. Moreover, we demonstrate that METTL16 is critical for the tumorigenesis of hepatocellular carcinoma. Collectively, our studies reveal previously unappreciated dual functions of METTL16 as an m6A writer and a translation-initiation facilitator, which together contribute to its essential function in tumorigenesis.


Asunto(s)
Adenosina/análogos & derivados , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/enzimología , Neoplasias Hepáticas/enzimología , Metiltransferasas/metabolismo , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Adenosina/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Citosol/enzimología , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metiltransferasas/genética , Ratones Endogámicos NOD , Ratones SCID , ARN Mensajero/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Transducción de Señal , Carga Tumoral
19.
Plant Methods ; 18(1): 7, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033123

RESUMEN

BACKGROUND: Ralstonia solanacearum, one of the most devastating bacterial plant pathogens, is the causal agent of bacterial wilt. Recently, several studies on resistance to bacterial wilt have been conducted using the Arabidopsis-R. solanacearum system. However, the progress of R. solanacearum infection in Arabidopsis is still unclear. RESULTS: We generated a bioluminescent R. solanacearum by expressing plasmid-based luxCDABE. Expression of luxCDABE did not alter the bacterial growth and pathogenicity. The light intensity of bioluminescent R. solanacearum was linearly related to bacterial concentrations from 104 to 108 CFU·mL-1. After root inoculation with bioluminescent R. solanacearum strain, light signals in tomato and Arabidopsis were found to be transported from roots to stems via the vasculature. Quantification of light intensity from the bioluminescent strain accurately reported the difference in disease resistance between Arabidopsis wild type and resistant mutants. CONCLUSIONS: Bioluminescent R. solanacearum strain spatially and quantitatively measured bacterial growth in tomato and Arabidopsis, and offered a tool for the high-throughput study of R. solanacearum-Arabidopsis interaction in the future.

20.
Br J Haematol ; 193(6): 1096-1104, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33764511

RESUMEN

Minimal residual disease (MRD) is an important independent prognostic factor for relapse and survival in acute lymphoblastic leukaemia (ALL). Compared with adult B-cell ALL, reports of adult T-cell ALL (T-ALL) MRD have been scarce and mostly based on molecular methods. We evaluated the prognostic value of multiparameter flow cytometry (FCM)-based MRD at the end of induction (EOI-MRD). The present retrospective study included 94 adult patients with T-ALL. MRD was detected by six- to eight-colour FCM. Patients who were EOI-MRD positive had a higher cumulative incidence of relapse (CIR) (87·6% vs. 38·8%, P = 0·0020), and a lower relapse-free survival (RFS) (5·4% vs. 61·0%, P = 0·0005) and overall survival (OS) (32·7% vs. 69·7%, P < 0·0001) than those who were EOI-MRD negative. Moreover, for patients who received allogeneic haematopoietic stem cell transplantation (allo-HSCT) at their first remission, EOI-MRD positivity was predictive of post-transplant relapse (2-year CIR: 68·2% vs. 4·0%, P = 0·0003). Multivariate analysis showed that EOI-MRD was an independent prognostic factor for CIR [hazard ratio (HR) 2·139, P = 0·046], RFS (HR 2·125, P = 0·048) and OS (HR 2·987, P = 0·017). In conclusion, EOI-MRD based on FCM was an independent prognostic factor for relapse and survival in adult T-ALL. For patients who underwent HSCT, EOI-MRD could be used to identify patients with a high risk of relapse after allo-HSCT.


Asunto(s)
Citometría de Flujo , Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adolescente , Adulto , Anciano , Aloinjertos , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células T Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Estudios Retrospectivos , Medición de Riesgo , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA