Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
3.
Int J Biol Macromol ; 271(Pt 1): 132626, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38795893

RESUMEN

Immobilization of proteolytic enzymes onto nanocarriers is effective to improve drug diffusion in tumors through degrading the dense extracellular matrix (ECM). Herein, immobilization and release behaviors of hyaluronidase, bromelain, and collagenase (Coll) on mesoporous silica nanoparticles (MSNs) were explored. A series of cationic MSNs (CMSNs) with large and adjustable pore sizes were synthesized, and investigated together with two anionic MSNs of different pore sizes. CMSNs4.0 exhibited the highest enzyme loading capacity for hyaluronidase and bromelain, and CMSNs4.5 was the best for Coll. High electrostatic interaction, matched pore size, and large pore volume and surface area favor the immobilization. Changes of the enzyme conformations and surface charges with pH, existence of a space around the immobilized enzymes, and the depth of the pore structures, affect the release ratio and tunability. The optimal CMSNs-enzyme complexes exhibited deep and homogeneous penetration into pancreatic tumors, a tumor model with the densest ECM, with CMSNs4.5-Coll as the best. Upon loading with doxorubicin (DOX), the CMSNs-enzyme complexes induced high anti-tumor efficiencies. Conceivably, the DOX/CMSNs4.5-NH2-Coll nanodrug exhibited the most effective tumor therapy, with a tumor growth inhibition ratio of 86.1 %. The study provides excellent nanocarrier-enzyme complexes, and offers instructive theories for enhanced tumor penetration and therapy.

4.
Int J Med Microbiol ; 315: 151622, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38776570

RESUMEN

BACKGROUND: The increasing prevalence of antibiotic-resistant Helicobacter pylori strains poses a significant threat to children's health. This study investigated antibiotic resistance rates in Helicobacter pylori strains isolated from children in Shanghai and analyzed the presence of virulence genes in these strains. METHODS: We obtained 201 Helicobacter pylori strains from pediatric patients with upper gastrointestinal symptoms who underwent gastrointestinal endoscopy between 2019 and 2022. Subsequently, we performed antibiotic susceptibility tests and virulence gene PCR assays on these strains. RESULTS: Helicobacter pylori resistance rates of 45.8%, 15.4%, 1.0%, and 2.5% were detected for metronidazole, clarithromycin, amoxicillin, and levofloxacin, respectively. Among all isolates, 64.7% exhibited resistance to at least one antibiotic. Resistance to metronidazole and clarithromycin increased from 2019 to 2022. The predominant vacA gene subtype was vacA s1a/m2. The prevalence of vacA m2 and dupA exhibited an upward trend, while oipA presented a decreasing trend from 2019 to 2022. The prevalence of dupA was significantly higher in gastritis than peptic ulcer disease, and in non-treatment compared to treatment groups. CONCLUSIONS: Helicobacter pylori antibiotic resistance remains high in children and has risen in recent years. Therefore, the increasing use of metronidazole and clarithromycin requires increased monitoring in children. No association was observed between antibiotic resistance and virulence gene phenotypes.

5.
Int J Biol Macromol ; 268(Pt 2): 131977, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692540

RESUMEN

The emulsions prepared with most currently reported emulsifiers are stable only at room temperature and are susceptible to demulsification at higher temperatures. This thermal instability prevents their use in high-temperature and high-salt environments encountered oilfield extraction. To address this issue, in this study, two temperature-responsive emulsifiers, PSBMA and CS-PSBMA, were synthesized. Both emulsifiers exhibited the ability to form stable emulsions within the temperature range of 60-80 °C and undergo demulsification at 20-40 °C. A comprehensive investigation was conducted to assess the impact of emulsifier concentration, water-to-oil ratio, and salt ion concentration on the stability of emulsions formed by these two emulsifiers. The results demonstrated their remarkable emulsification capabilities across diverse oil phases. Notably, the novel emulsifier CS-PSBMA, synthesized through the grafting chitosan (CS) onto PSBMA, not only exhibits superior emulsion stability and UCST temperature responsiveness but also significantly enhanced the salt resistance of the emulsion. Remarkably, the emulsion maintained its stability even in the presence of monovalent salt ions at concentrations up to 2 mol/L (equivalent to a mineralization level of 1.33 × 105 mg/L in water) and divalent salt ions at concentrations up to 3 mol/L (equivalent to a mineralization level of 2.7 × 105 mg/L in water). The emulsions stabilized by both emulsifiers are resilient to harsh reservoir conditions and effectively emulsify heavy oils, enabling high-temperature emulsification and low-temperature demulsification. These attributes indicate their promising potential for industrial applications, particularly in the field of enhanced oil recovery.


Asunto(s)
Emulsionantes , Emulsiones , Temperatura , Emulsionantes/química , Emulsiones/química , Aceites/química , Agua/química , Sales (Química)/química , Metacrilatos/química , Quitosano/química
6.
Acta Physiol (Oxf) ; 240(6): e14152, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38682304

RESUMEN

Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.


Asunto(s)
Canales Iónicos , Riñón , Mecanotransducción Celular , Canales Iónicos/metabolismo , Humanos , Animales , Mecanotransducción Celular/fisiología , Riñón/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38607720

RESUMEN

CircRNA has been shown to be involved in the occurrence of many diseases. Several computational frameworks have been proposed to identify circRNA-disease associations. Despite the existing computational methods have obtained considerable successes, these methods still require to be improved as their performance may degrade due to the sparsity of the data and the problem of memory overflow. We develop a novel computational framework called LGCDA to predict circRNA-disease associations by fusing local and global features to solve the above mentioned problems. First, we construct closed local subgraphs by using k-hop closed subgraph and label the subgraphs to obtain rich graph pattern information. Then, the local features are extracted by using graph neural network (GNN). In addition, we fuse Gaussian interaction profile (GIP) kernel and cosine similarity to obtain global features. Finally, the score of circRNA-disease associations is predicted by using the multilayer perceptron (MLP) based on local and global features. We perform five- fold cross validation on five datasets for model evaluation and our model surpasses other advanced methods. The code is available at https://github.com/lanbiolab/LGCDA.

9.
Heliyon ; 10(8): e29716, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38665577

RESUMEN

Many fintech consumers are hesitant to perform online transactions given the lack of trust in online companies. In response to this reality, we construct and evaluate a trust-theoretic user acceptability model for financial technologies. The research seeks to look at the influence of trust on the intention to use fintech. A sampling of potential users in Pakistan is used to validate the model experimentally. Smart PLS 3 has been used to robust the theorized configuration of constructs (structural equation modeling) based on 275 survey responses. Contrary to other scenarios, the findings indicate that "customer trust in fintech" is more important than other aspects in determining technology adoption. Pakistani consumers' intention is positively affected by trust. Trust facilitators influence consumers' trust; among them, trust propensity is the factor having high values, followed by perceived size, interaction with online customers, perceived benefit, third-party seal, perceived ease of use, and perceived reputation.

10.
Mol Biotechnol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456959

RESUMEN

Hepatic ischemia-reperfusion injury (HIRI) was widely accepted as a critical complication of liver resection and transplantation. A growing body of evidence suggested that O-sialoglycoprotein endopeptidase (OSGEP) was involved in cell proliferation and mitochondrial metabolism. However, whether OSGEP could mediate the pathogenesis of HIRI has still remained unclarified. This study investigated whether OSGEP could be protective against HIRI and elucidated the potential mechanisms. The OSGEP expression level was detected in cases undergoing ischemia-related hepatectomy and a stable oxygen-glucose deprivation/reoxygenation (OGD/R) condition in hepG2 cells. Additionally, it was attempted to establish a mouse model of HIRI, thus, the function and mechanism of OSGEP could be analyzed. At one day after hepatectomy, the negative association of OSGEP expression level with the elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was noted. Moreover, it was attempted to carry out gain- and loss-of-function analyses of OSGEP in hepG2 cells to reveal its influences on OGD/R-induced injury and relevant signaling pathways. The findings suggested that OSGEP overexpression significantly protected hepG2 cells against ferroptotic cell death, while OSGEP consumption had opposite effects. Consistent with in vitro studies, OSGEP deficiency exacerbated liver functions and ferroptotic cell death in a mouse model of HIRI. The results also revealed that OSGEP mediated the progression of HIRI by regulating the MEK/ERK signaling pathway. Rescue experiments indicated that ERK1/2 knockdown or overexpression reversed the effects of OSGEP overexpression or knockdown on hepG2 cells under OGD/R condition. Taken together, the findings demonstrated that OSGEP could contribute to alleviate HIRI by mediating the MEK-ERK signaling pathway, which may serve as a potential prognostic marker and a therapeutic target for HIRI.

11.
Front Immunol ; 15: 1352479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426093

RESUMEN

The host defence responses play vital roles in viral infection and are regulated by complex interactive networks. The host immune system recognizes viral pathogens through the interaction of pattern-recognition receptors (PRRs) with pathogen-associated molecular patterns (PAMPs). As a PRR mainly in the cytoplasm, cyclic GMP-AMP synthase (cGAS) senses and binds virus DNA and subsequently activates stimulator of interferon genes (STING) to trigger a series of intracellular signalling cascades to defend against invading pathogenic microorganisms. Integrated omic and functional analyses identify the cGAS-STING pathway regulating various host cellular responses and controlling viral infections. Aside from its most common function in regulating inflammation and type I interferon, a growing body of evidence suggests that the cGAS-STING signalling axis is closely associated with a series of cellular responses, such as oxidative stress, autophagy, and endoplasmic reticulum stress, which have major impacts on physiological homeostasis. Interestingly, these host cellular responses play dual roles in the regulation of the cGAS-STING signalling axis and the clearance of viruses. Here, we outline recent insights into cGAS-STING in regulating type I interferon, inflammation, oxidative stress, autophagy and endoplasmic reticulum stress and discuss their interactions with viral infections. A detailed understanding of the cGAS-STING-mediated potential antiviral effects contributes to revealing the pathogenesis of certain viruses and sheds light on effective solutions for antiviral therapy.


Asunto(s)
Interferón Tipo I , Virosis , Humanos , Inflamación , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo , Estrés Oxidativo , Autofagia
12.
Neurosurg Rev ; 47(1): 25, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163848

RESUMEN

The role of superficial temporal artery-to-middle cerebral artery (STA-MCA) bypass in acute ischemic stroke (AIS) is contentious, with no evidence in patients with AIS and large vessel occlusion (AIS-LVO). We conducted a cohort study to assess emergency STA-MCA outcomes in AIS-LVO and a meta-analysis to evaluate STA-MCA outcomes in early AIS treatment. From January 2018 to March 2021, we consecutively recruited newly diagnosed AIS-LVO patients, dividing them into STA-MCA and non-STA-MCA groups. To evaluate the neurological status and outcomes, we employed the National Institutes of Health Stroke Scale (NIHSS) during the acute phase and the modified Rankin Scale (mRS) during the follow-up period. Additionally, we conducted a meta-analysis encompassing all available clinical studies to assess the impact of STA-MCA on patients with AIS. In the cohort study (56 patients), we observed more significant neurological improvement in the STA-MCA group at two weeks (p = 0.030). However, there was no difference in the clinical outcomes between the two groups. Multivariable logistic regression identified the NIHSS at two weeks (OR: 0.840; 95% CI: 0.754-0.936, p = 0.002) as the most critical predictor of a good outcome. Our meta-analysis of seven studies indicated a 67% rate for achieving a good outcome (mRS < 3) at follow-up points (95% CI: 57%-77%, I2 = 44.1%). In summary, while the meta-analysis suggested the potential role of STA-MCA bypass in mild to moderate AIS, our single-center cohort study indicated that STA-MCA bypass does not seem to improve the prognosis of patients who suffer from AIS-LVO.


Asunto(s)
Revascularización Cerebral , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Enfermedades Vasculares , Humanos , Arteria Cerebral Media/cirugía , Estudios de Cohortes , Arterias Temporales/cirugía , Accidente Cerebrovascular/cirugía , Estudios Retrospectivos
13.
Phys Chem Chem Phys ; 26(1): 304-313, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38062783

RESUMEN

To control the transport stability and release efficiency of loaded theranostic drugs in triblock copolymer carriers, the reversible crosslinking ability is of great significance. A molecular level exploration of such a function is needed to extend existing stabilizing and responsive dissociation mechanisms of carriers. Here, dissipative particle dynamics simulations were used to first demonstrate the formation of triblock copolymer vesicular carriers. Chemical crosslinking was used to strengthen the structural stability of the vesicle shell to avoid drug leakage. Reversible decrosslinking along with dissociation of the vesicle and release of loaded drugs were then explored. The structural, energetic and dynamical properties of the system were discussed at the molecular level. The regulation mechanism of drug release patterns was revealed by systematically exploring the effect of intra and intermolecular repulsive interactions. The results indicate that the chemical crosslinking of copolymers enhanced the compactness of the vesicle shell with a strengthened microstructure, increased binding energy, and limited chain migration, thus achieving more stable delivery of drugs. In terms of drug release, we clarified how the pairwise interactions of beads in the solution system affect the responsive dissociation of the vesicle and associated release patterns (speed and amount) of drugs. More efficient delivery and smart release of theranostic drugs are achieved using such reversible crosslinked triblock copolymer vesicles.

14.
ACS Appl Mater Interfaces ; 15(51): 59482-59493, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38090752

RESUMEN

Metal-nitrogen-carbon (M-N-C) catalysts obtained from zeolitic imidazolate frameworks (ZIFs) have great potential in the oxygen reduction reaction (ORR). Herein, based on the same three-dimensional (3D) topological structure of ZIF-67 and ZIF-8, ZIF-67 is grown on the ZIF-8 surface by the epitaxial growth method, and ZIF-8 is used as a sacrificial template to obtain a Co-embedded layered porous carbon nanocage (CoPCN) electrocatalyst. Meanwhile, the self-sacrificing template effectively improves the specific surface area of the porous structure and reduces the depletion of active sites. The CoPCN shows a high half-wave potential of 0.885 V and superior stability as well as excellent methanol resistance. Theoretical calculations demonstrate that the Co-N1-C2 sites of CoPCN effectively reduce the energy barrier of ORR. In addition, a zinc-air battery (ZAB) based on the CoPCN exhibits excellent peak power density (90 mW cm-2) and superior cycle performance. This work presents a novel idea in the design of ZIF precursor systems to synthesize efficient ORR catalysts.

15.
iScience ; 26(12): 108485, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38094243

RESUMEN

Renal medullary aquaporin-1 (AQP1) plays an important role in the urinary concentration. This study aimed to investigate the regulation of AQP1 by low osmotic stress and a potential role of autophagy. Low osmotic stress induced a dramatically decreased AQP1 protein expression in murine inner medullary collecting duct 3 (mIMCD3) cells, which was associated with a marked activation of autophagy. Inhibition of autophagy by 3-methyladenine (3-MA), chloroquine, or knockdown of autophagy-related protein 5 (ATG5) prevented the decrease in AQP1 protein abundance. Rapamycin-induced autophagy was associated with a decreased AQP1 protein expression and an enhanced interaction between AQP1 and ATG5 in mIMCD3 cells under low osmotic stress. In kidney inner medulla of mice given a 3% NaCl solution, activation of autophagy was associated with decreased AQP1 protein expression, which was prevented by 3-MA. In conclusion, low osmotic stress induced autophagy which contributed to the decreased AQP1 protein expression in the renal medulla.

16.
Cardiovasc Ther ; 2023: 8817431, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125704

RESUMEN

Hyperhomocysteinemia is a risk factor for various cardiovascular diseases. However, the mechanism underlying homocysteine- (Hcy-) induced vascular injury remains unclear. The purpose of the present study was to examine a potential mechanism by which Hcy induced injury in human umbilical vascular endothelial cells (HUVEC). The protein abundance of autophagy-related markers was markedly decreased after Hcy treatment, which was associated with endoplasmic reticulum (ER) stress and apoptosis in HUVECs. Protein expression level of angiotensin II type 1 receptor (AT1 receptor) was dramatically increased in response to Hcy. Valsartan, an AT1 receptor blocker, improved autophagy and prevented ER stress and apoptosis in HUVECs treated with Hcy. Consistent with this, silence of AT1 receptor with siRNA decreased the protein abundance of ER stress markers, prevented apoptosis, and promoted autophagy in HUVECs. Inhibition or knockdown of AT1 receptor was shown to be associated with suppression of p-GSK3ß/GSK3ß-p-mTOR/mTOR signaling pathway. Additionally, inhibition of autophagy by 3-MA aggravated Hcy-induced apoptosis, while amelioration of ER stress by 4-PBA prevented Hcy-induced injury in HUVECs. Hcy-induced HUVEC injury was likely attributed to AT1 receptor activation, leading to impaired autophagy, ER stress, and apoptosis.


Asunto(s)
Receptor de Angiotensina Tipo 1 , Serina-Treonina Quinasas TOR , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Valsartán/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Autofagia , Homocisteína/toxicidad , Homocisteína/metabolismo , Estrés del Retículo Endoplásmico
17.
Animals (Basel) ; 13(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958075

RESUMEN

Haemophilus parasuis (H. parasuis, HPS) is a prominent pathogenic bacterium in pig production. Its infection leads to widespread fibrinous inflammation in various pig tissues and organs, often in conjunction with various respiratory virus infections, and leads to substantial economic losses in the pig industry. Therefore, the rapid diagnosis of this pathogen is of utmost importance. In this study, we used recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR) technology to establish a convenient detection and analysis system for H. parasuis that is fast to detect, easy to implement, and accurate to analyze, known as RPA-CRISPR/Cas12a analysis. The process from sample to results can be completed within 1 h with high sensitivity (0.163 pg/µL of DNA template, p < 0.05), which is 104 -fold higher than the common PCR method. The specificity test results show that the RPA-CRISPR/Cas12a analysis of H. parasuis did not react with other common pig pathogens, including Streptococcus suis type II and IX, Actinobacillus pleuropneumoniae, Escherichia coli, Salmonella, Streptococcus suis, and Staphylococcus aureus (p < 0.0001). The RPA-CRISPR/Cas12a assay was applied to 15 serotypes of H. parasuis clinical samples through crude extraction of nucleic acid by boiling method, and all of the samples were successfully identified. It greatly reduces the time and cost of nucleic acid extraction. Moreover, the method allows results to be visualized with blue light. The accurate and convenient detection method could be incorporated into a portable format as point-of-care (POC) diagnostics detection for H. parasuis at the field level.

19.
EPMA J ; 14(3): 443-456, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37605654

RESUMEN

Human growth hormone (GH) is the indispensable hormone for the maintenance of normal physiological functions of the human body, including the growth, development, metabolism, and even immunoregulation. The GH is synthesized, secreted, and stored by somatotroph cells in adenohypophysis. Abnormal GH is associated with various GH-related diseases, such as acromegaly, dwarfism, diabetes, and cancer. Currently, some studies found there are dozens or even hundreds of GH proteoforms in tissue and serum as well as a series of GH-binding protein (GHBP) proteoforms and GH receptor (GHR) proteoforms were also identified. The structure-function relationship of protein hormone proteoforms is significantly important to reveal their overall physiological and pathophysiological mechanisms. We propose the use of proteoformics to study the relationship between every GH proteoform and different physiological/pathophysiological states to clarify the pathogenic mechanism of GH-related disease such as pituitary neuroendocrine tumor and conduct precise molecular classification to promote predictive preventive personalized medicine (PPPM / 3P medicine). This article reviews GH proteoformics in GH-related disease such as pituitary neuroendocrine tumor, which has the potential role to provide novel insight into pathogenic mechanism, discover novel therapeutic targets, identify effective GH proteoform biomarker for patient stratification, predictive diagnosis, and prognostic assessment, improve therapy method, and further accelerate the development of 3P medicine.

20.
ACS Appl Mater Interfaces ; 15(32): 38294-38308, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37542453

RESUMEN

Loading hyaluronidase (Hyal) in a nanocarrier is a potent strategy to degrade the tumor extracellular matrix for tumor deep penetration and enhanced tumor therapy. Herein, a pH-sensitive biomimicking nanosystem with high Hyal loading, effective tumor targeting, and controllable release is constructed. Specifically, cationic mesoporous silica nanoparticles (CMSNs) with large pores 13.52 nm in diameter were synthesized in a one-pot manner by adding N-[3-trimethoxysilylpropyl]-N,N,N-trimethylammonium to a reversed microemulsion reaction system. The Hyal loading rate was as high as 19.47% owing to matched pore size and the cationic surface charge. Subsequently, a pH-sensitive biomimetic hybrid membrane (pHH) composed of pH-sensitive liposome (pHL), red blood cell membrane, and pancreatic cancer cell membrane was camouflaged on the pHL-coated and doxorubicin/Hyal-loaded CMSNs (shortened as DHCM). The DHCM@pHL@pHH is stable at neutral pH while it releases the payloads smoothly in the tumor acidic microenvironment. Consequently, it can escape from macrophage clearance, be specifically taken up by pancreatic cancer cells, and efficiently accumulate at the tumor site. More importantly, it can penetrate deeply in pancreatic tumors with a tumor growth inhibition ratio of 80.46%. The nanosystem is biocompatible and has potential for clinical transformation, and the nanocarrier is promisingly applicable as a platform for encapsulation of various macromolecules for smart and tumor-targeted delivery.


Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Humanos , Dióxido de Silicio/química , Hialuronoglucosaminidasa , Sistemas de Liberación de Medicamentos , Biomimética , Nanopartículas/química , Doxorrubicina/química , Neoplasias Pancreáticas/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Portadores de Fármacos/química , Porosidad , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA