Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 877
Filtrar
1.
Bioelectrochemistry ; 158: 108723, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38733720

RESUMEN

Bidirectional electron transfer is about that exoelectrogens produce bioelectricity via extracellular electron transfer at anode and drive cytoplasmic biochemical reactions via extracellular electron uptake at cathode. The key factor to determine above bioelectrochemical performances is the electron transfer efficiency under biocompatible abiotic/biotic interface. Here, a graphene/polyaniline (GO/PANI) nanocomposite electrode specially interfacing exoelectrogens (Shewanella loihica) and augmenting bidirectional electron transfer was conducted by in-situ electrochemical modification on carbon paper (CP). Impressively, the GO/PANI@CP electrode tremendously improved the performance of exoelectrogens at anode for wastewater treatment and bioelectricity generation (about 54 folds increase of power density compared to blank CP electrode). The bacteria on electrode surface not only showed fast electron release but also exhibited high electricity density of extracellular electron uptake through the proposed direct electron transfer pathway. Thus, the cathode applications of microbial electrosynthesis and bio-denitrification were developed via GO/PANI@CP electrode, which assisted the close contact between microbial outer-membrane cytochromes and nanocomposite electrode for efficient nitrate removal (0.333 mM/h). Overall, nanocomposite modified electrode with biocompatible interfaces has great potential to enhance bioelectrochemical reactions with exoelectrogens.

2.
Int J Biol Macromol ; : 132232, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734349

RESUMEN

High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.

3.
Heliyon ; 10(9): e29789, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699047

RESUMEN

Recurrent mastitis poses a common challenge on dairy farms. While the impact of repeated mastitis within the same lactation has been investigated, the difference from one lactation to the next, particularly concerning the change of milk and blood metabolites, remains unclear. This study aimed to examine the difference in milk yield, milk composition, and metabolic status in the subsequent lactation between healthy and repeated mastitis in the previous lactation. The study population comprised 50 cows chosen from 400 cows, with 25 having no history of mastitis and 25 experiencing mastitis more than three times during the last lactation. Following dry-off and calving, all cows initiated a new lactation, during which no mastitis was diagnosed until the sample collection period. In the group exposed to repeated mastitis, a significant decrease in milk fat levels was observed in the subsequent lactation, while no change was observed in milk somatic cell count (SCC). Milk collected from cows that had experienced repeated mastitis in the previous lactation exhibited significant increases in the levels of free amino acids, namely valine, proline, and alanine. However, no difference in plasma levels of these amino acids was noted. These results indicate that individuals exposed to repeated mastitis have persistent milk quality changes even after dry-off. Biomarker analysis suggested that the milk valine and proline showed a moderate biomarker potential on Kappa coefficients to characterize cows that have experienced repeated mastitis. Furthermore, the results of biomarker combinations for valine and proline provided the highest specificity (100 %), positive likelihood ratio (infinity), and substantial biomarker potential on kappa coefficients (0.68). These findings significantly enhance our understanding of the pathobiology and etiology of recurrent mastitis and provide a biomarker to characterize cows that have experienced repeated mastitis in the past.

4.
J Colloid Interface Sci ; 667: 101-110, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38621332

RESUMEN

It is a challenging issue for the creation of photogenerated carrier collectors on the photocatalyst to drive charge separation and promote reaction kinetics in the photocatalytic reaction. Herein, based on one-step dual-modulation strategy, IrO2 nanodots are modified at the edge of polymeric carbon nitride (PCN) nanosheets and atomically dispersed Ir atoms are implanted in the skeleton of PCN to obtain a unique Ir-PCN/IrO2 photocatalyst. IrO2 nanodots and atomically dispersed Ir atoms act as hole and electron collectors to synergistically promote the carrier separation and reaction kinetics, respectively, thereby greatly improving the photocatalytic hydrogen evolution (PHE) performance. As a result, without adding additional cocatalyst, the PHE rate over the optimal Ir-PCN/IrO2-2% sample reaches up to 1564.4 µmol h-1 g-1 under the visible light irradiation, with achieving an apparent quantum yield (AQY) of 15.7% at 420 nm.

5.
J Anim Sci Technol ; 66(2): 295-309, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38628686

RESUMEN

To investigate the effect of dietary supplementation with a fermented mixture of bean dregs and wheat bran (FBW) on sow performance. FBW was given to sows during late gestation and lactation; in total, 24 sows were randomly assigned to 4 groups (control diet; 3% FBW diet; 6% FBW diet; 9% FBW diet, n = 6). The weight ratio of bean dregs (wet) to wheat bran was 4:6. Sows were fed different diets from 85 d of gestation until weaning. The results showed that supplementation with FBW increased average daily feed intake (ADFI) during lactation (p < 0.05). FBW supplementation also increased litter weight and milk yield (p < 0.05). The contents of Escherichia coli in the feces of the treatment groups were significantly reduced by FBW supplementation (p < 0.01). FBW supplementation significantly improved the fecal morphology (p < 0.05), alleviating sows' constipation. In conclusion, FBW could increase the ADFI, improve lactation and piglet litter weight in sows and reduce the pathogenic bacterial content in sow feces and constipation.

6.
Appl Environ Microbiol ; : e0217423, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656183

RESUMEN

The gut microbiota of poultry is influenced by a variety of factors, including feed, drinking water, airborne dust, and footpads, among others. Gut microbiota can affect the immune reaction and inflammation in the lungs. To investigate the effect of gut microbiota variation on lung inflammation induced by PM2.5 (fine particulate matter) in broilers, 36 Arbor Acres (AA) broilers were randomly assigned to three groups: control group (CON), PM2.5 exposure group (PM), and PM2.5 exposure plus oral antibiotics group (PMA). We used non-absorbable antibiotics (ABX: neomycin and amikacin) to modify the microbiota composition in the PMA group. The intervention was conducted from the 18th to the 28th day of age. Broilers in the PM and PMA groups were exposed to PM by a systemic exposure method from 21 to 28 days old, and the concentration of PM2.5 was controlled at 2 mg/m3. At 28 days old, the lung injury score, relative mRNA expression of inflammatory factors, T-cell differentiation, and dendritic cell function were significantly increased in the PM group compared to the CON group, and those of the PMA group were significantly decreased compared to the PM group. There were significant differences in both α and ß diversity of cecal microbiota among these three groups. Numerous bacterial genera showed significant differences in relative abundance among the three groups. In conclusion, gut microbiota could affect PM2.5-induced lung inflammation in broilers by adjusting the capacity of antigen-presenting cells to activate T-cell differentiation. IMPORTANCE: Gut microbes can influence the development of lung inflammation, and fine particulate matter collected from broiler houses can lead to lung inflammation in broilers. In this study, we explored the effect of gut microbes modified by intestinal non-absorbable antibiotics on particulate matter-induced lung inflammation. The results showed that modification in the composition of gut microbiota could alleviate lung inflammation by attenuating the ability of dendritic cells to stimulate T-cell differentiation, which provides a new way to protect lung health in poultry farms.

7.
J Cell Mol Med ; 28(8): e18291, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597412

RESUMEN

Natural immunoglobulin M (IgM) antibodies have been shown to recognize post-ischemic neoepitopes following reperfusion of tissues and to activate complement. Specifically, IgM antibodies and complement have been shown to drive hepatic ischemia reperfusion injury (IRI). Herein, we investigate the therapeutic effect of C2 scFv (single-chain antibody construct with specificity of a natural IgM antibody) on hepatic IRI in C57BL/6 mice. Compared with PBS-treated mice, C2 scFv-treated mice displayed almost no necrotic areas, significant reduction in serum ALT, AST and LDH levels, and significantly reduced in the number of TUNEL positive cells. Moreover, C2 scFv-treated mice exhibited a notable reduction in inflammatory cells after hepatic IRI than PBS-treated mice. The serum IL-6, IL-1ß, TNF-α and MPC-1 levels were also severely suppressed by C2 scFv. Interestingly, C2 scFv reconstituted hepatic inflammation and IRI in Rag1-/- mice. We found that C2 scFv promoted hepatic cell death and increased inflammatory cytokines and infiltration of inflammatory cells after hepatic IRI in Rag1-/- mice. In addition, IgM and complement 3d (C3d) were deposited in WT mice and in Rag1-/- mice reconstituted with C2 scFv, indicating that C2 scFv can affect IgM binding and complement activation and reconstitute hepatic IRI. C3d expression was significantly lower in C57BL/6 mice treated with C2 scFv compared to PBS, indicating that excessive exogenous C2 scFv inhibited complement activation. These data suggest that C2 scFv alleviates hepatic IRI by blocking complement activation, and treatment with C2 scFv may be a promising therapy for hepatic IRI.


Asunto(s)
Hígado , Daño por Reperfusión , Animales , Ratones , Ratones Endogámicos C57BL , Hígado/metabolismo , Inmunoglobulina M , Proteínas del Sistema Complemento , Proteínas de Homeodominio/metabolismo
8.
J Hazard Mater ; 470: 134214, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603908

RESUMEN

Fe(II) regeneration is decisive for highly efficient H2O2-based Fenton-like processes, but the role of cobalt-containing reactive sites in promoting Fe(II) regeneration was overlooked. Herein, a single atom Co-N-C catalyst was employed in Fe(II)/H2O2 system to promote the degradation of diverse organic contaminants. The EPR and quenching experiments indicated Co-N-C significantly enhanced the generation of superoxide species, and accelerated hydroxyl radical generation for pollutant degradation. The electrochemical and surface composition analyses demonstrated the enhanced H2O2 activation and Fe(III)/Fe(II) recycling on the catalyst. Furthermore, in-situ Raman characterization with shell-isolated gold nanoparticles was employed to visualize the interfacial reactive intermediates and their time-resolved interaction. The accumulation of interfacial CoOOH* was confirmed when Co-N-C activated H2O2 alone, but it rapidly transformed into FeOOH* upon Fe(II) addition. Besides, the temporal variation of OOH* intermediates and the relative intensity of Co(III)-O and Co(IV)=O peaks depicted the dynamic interaction of reactive intermediates along the H2O2 consumption. With this basis, we proposed a mechanism of interfacial OOH* mediated Fe(II) regeneration, which overcame the kinetical limitation of Fe(II)/H2O2 system. Therefore, this study provided a primary effort to elucidate the overlooked role of interfacial CoOOH* in the Fenton-like processes, which may inspire the design of more efficient catalysts.

9.
Biosensors (Basel) ; 14(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38667172

RESUMEN

The homeostasis of cellular calcium is fundamental for many physiological processes, while the calcium levels remain inhomogeneous within cells. During the onset of asthma, epithelial and inflammatory cells secrete platelet-derived growth factor (PDGF), inducing the proliferation and migration of airway smooth muscle (ASM) to the epidermal layer, narrowing the airway. The regulation of ASM cells by PDGF is closely related to the conduction of calcium signals. In this work, we generated subcellular-targeted FRET biosensors to investigate calcium regulation in the different compartments of ASM cells. A PDGF-induced cytoplasmic calcium [Ca2+]C increase was attributed to both extracellular calcium influx and endoplasmic reticulum (ER) calcium [Ca2+]ER release, which was partially regulated by the PLC-IP3R pathway. Interestingly, the removal of the extracellular calcium influx led to inhibited ER calcium release, likely through inhibitory effects on the calcium-dependent activation of the ER ryanodine receptor. The inhibition of the L-type calcium channel on the plasma membrane or the SERCA pump on the ER resulted in both reduced [Ca2+]C and [Ca2+]ER from PDGF stimulation, while IP3R channel inhibition led to reduced [Ca2+]C only. The inhibited SERCA pump caused an immediate [Ca2+]C increase and [Ca2+]ER decrease, indicating active calcium exchange between the cytosol and ER storage in resting cells. PDGF-induced calcium at the outer mitochondrial membrane sub-region showed a similar regulatory response to cytosolic calcium, not influenced by the inhibition of the mitochondrial calcium uniporter channel. Therefore, our work identifies calcium flow pathways among the extracellular medium, cell cytosol, and ER via regulatory calcium channels. Specifically, extracellular calcium flow has an essential function in fully activating ER calcium release.


Asunto(s)
Técnicas Biosensibles , Calcio , Transferencia Resonante de Energía de Fluorescencia , Miocitos del Músculo Liso , Factor de Crecimiento Derivado de Plaquetas , Factor de Crecimiento Derivado de Plaquetas/farmacología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Calcio/metabolismo , Miocitos del Músculo Liso/metabolismo , Humanos , Retículo Endoplásmico/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio
10.
Int J Stem Cells ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531608

RESUMEN

Nucleotide-binding oligomerization domain 1 (NOD1), a cytosolic pattern recognition receptor protein, plays a crucial role in innate immune responses. However, the functional expression of NOD1 in mesenchymal stem cells (MSCs) derived from endometriosis remains unclear. The aim of this study was to explore the functions of NOD1 in ectopic endometrial lesions. Tissues and MSCs were isolated from both normal endometrium and endometriosis. Immunohistochemistry and real time quantitative polymerase chain reaction (RT-qPCR) were used to determine the expression of NOD1 in the tissues/MSCs. Quantification of various cytokines was performed using RT-qPCR and enzyme-linked immunosorbent assay. To confirm the proliferation, invasion/migration, and apoptotic viabilities of the samples, Cell Counting Kit-8, clonogenic formation, transwell assays, and apoptotic experiments were conducted. Higher levels of NOD1 expression were detected in the ectopic-MSCs obtained from endometriosis compared to those from the endometrium. The expression of interleukin-8 was higher in the ectopic-MSCs than in the eutopic-MSCs. Pretreatment with NOD1 agonist significantly enhanced the proliferation and invasion/migration of eutopic-MSCs. Additionally, the NOD1 inhibitor ML-130 significantly reduced the proliferation, clone formation, invasion, and migration abilities of the ectopic-MSCs, having no effect on their apoptosis capacity. Our findings suggest that the expression of NOD1 in ectopic-MSCs may contribute to the progression of ectopic endometrial lesions.

11.
ACS Biomater Sci Eng ; 10(4): 2607-2615, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38478959

RESUMEN

Conventional thinking when designing biodegradable materials and devices is to tune the intrinsic properties and morphological features of the material to regulate their degradation rate, modulating traditional factors such as molecular weight and crystallinity. Since regenerated silk protein can be directly thermoplastically molded to generate robust dense silk plastic-like materials, this approach afforded a new tool to control silk degradation by enabling the mixing of a silk-degrading protease into bulk silk material prior to thermoplastic processing. Here we demonstrate the preparation of these silk-based devices with embedded silk-degrading protease to modulate the degradation based on the internal presence of the enzyme to support silk degradation, as opposed to the traditional surface degradation for silk materials. The degradability of these silk devices with and without embedded protease XIV was assessed both in vitro and in vivo. Ultimately, this new process approach provides direct control of the degradation lifetime of the devices, empowered through internal digestion via water-activated proteases entrained and stabilized during the thermoplastic process.


Asunto(s)
Materiales Biocompatibles , Seda , Péptido Hidrolasas , Agua
12.
Poult Sci ; 103(5): 103633, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552343

RESUMEN

The processing and analysis of massive high-dimensional datasets are important issues in precision livestock farming (PLF). This study explored the use of multivariate analysis tools to analyze environmental data from multiple sensors located throughout a broiler house. An experiment was conducted to collect a comprehensive set of environmental data including particulate matter (TSP, PM10, and PM2.5), ammonia, carbon dioxide, air temperature, relative humidity, and in-cage and aisle wind speeds from 60 locations in a typical commercial broiler house. The dataset was divided into 3 growth phases (wk 1-3, 4-6, and 7-9). Spearman's correlation analysis and principal component analysis (PCA) were used to investigate the latent associations between environmental variables resulting in the identification of variables that played important roles in indoor air quality. Three cluster analysis methods; k-means, k-medoids, and fuzzy c-means cluster analysis (FCM), were used to group the measured parameters based on their environmental impact in the broiler house. In general, the Spearman and PCA results showed that the in-cage wind speed, aisle wind speed, and relative humidity played critical roles in indoor air quality distribution during broiler rearing. All 3 clustering methods were found to be suitable for grouping data, with FCM outperforming the other 2. Using data clustering, the broiler house spaces were divided into 3, 2, and 2 subspaces (clusters) for wk 1 to 3, 4 to 6, and 7 to 9, respectively. The subspace in the center of the house had a poorer air quality than other subspaces.


Asunto(s)
Pollos , Minería de Datos , Vivienda para Animales , Estaciones del Año , Animales , Pollos/fisiología , Análisis Multivariante , Contaminación del Aire Interior/análisis , Crianza de Animales Domésticos/métodos , Análisis por Conglomerados , Monitoreo del Ambiente/métodos
13.
J Environ Sci Health B ; 59(4): 183-191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38400726

RESUMEN

Glyphosate is an ingredient widely used in various commercial formulations, including Roundup®. This study focused on tight junctions and the expression of inflammatory genes in the small intestine of chicks. On the sixth day of embryonic development, the eggs were randomly assigned to three groups: the control group (CON, n = 60), the glyphosate group (GLYP, n = 60), which received 10 mg of active glyphosate/kg egg mass, and the Roundup®-based glyphosate group also received 10 mg of glyphosate. The results indicated that the chicks exposed to glyphosate or Roundup® exhibited signs of oxidative stress. Additionally, histopathological alterations in the small intestine tissues included villi fusion, complete fusion of some intestinal villi, a reduced number of goblet cells, and necrosis of some submucosal epithelial cells in chicks. Genes related to the small intestine (ZO-1, ZO-2, Claudin-1, Claudin-3, JAM2, and Occludin), as well as the levels of pro-inflammatory cytokines (IFNγ, IL-1ß, and IL-6), exhibited significant changes in the groups exposed to glyphosate or Roundup® compared to the control group. In conclusion, the toxicity of pure glyphosate or Roundup® likely disrupts the small intestine of chicks by modulating the expression of genes associated with tight junctions in the small intestine.


Asunto(s)
Glifosato , Herbicidas , Animales , Herbicidas/toxicidad , Herbicidas/metabolismo , Glicina/toxicidad , Uniones Estrechas/metabolismo , Pollos/genética
14.
J Hazard Mater ; 467: 133689, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335609

RESUMEN

Biodegradable plastic bags (BPBs), meant for eco-friendly, often inadequately degrade in compost, leading to microplastic pollution. In this study, the effect of Fenton-like reaction with Fe3O4 nanoparticles (NMs) on the plastisphere microorganisms' evolution and the BPBs' aging mechanism was revealed by co-composting of food waste with BPBs for 40 days. The establishment of the Fenton-like reaction was confirmed, with the addition of Fenton-like reagent treatments resulting in an increase of 57.67% and 37.75% in H2O2 levels during the composting, compared to the control group. Moreover, the structural characterization reveals that increasing oxygen content continuously generates reactive free radicals on the surface, leading to the formation of oxidative cavities. This process results in random chain-breaking, significantly reducing molecular weights by 39.27% and 38.81%, thus showcasing a deep-seated transformation in the plastic's molecular structure. Furthermore, the microbial network suggested that the Fenton-like reaction enriched plastisphere keystone species, thus accelerating the BPBs' aging. Additionally, the Fenton-like reaction improved compost maturity and reduced greenhouse gas emissions. These results reveal the bio-chemical mechanisms of BPBs aging and random chain-breaking by the Fenton-like reaction, under alternating oxidative/anoxic conditions of composting and provide a new insight to resolve the BPBs' pollutions.


Asunto(s)
Plásticos Biodegradables , Compostaje , Hierro , Eliminación de Residuos , Alimentos , Peróxido de Hidrógeno , Radicales Libres
15.
Macromol Rapid Commun ; 45(9): e2300652, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38407457

RESUMEN

Pyrrole-based polymers (PBPs), a type of fascinating functional polymers, play a crucial role in materials science. However, efficient synthetic strategies of PBPs with diverse structures are mainly focused on conjugated polypyrroles and still remain challenging. Herein, an atom and step economy protocol is described to access various 2,4-disubstituted PBPs by in situ formation of pyrrole core structure via copper-catalyzed [3+2] polycycloaddition of dialkynones and diisocyanoacetates. A series of PBPs is prepared with high molecular weight (Mw up to 18 200 Da) and moderate to good yield (up to 87%), which possesses a fluorescent emission located in the green to yellow light region. Blending the PBPs with polyvinyl alcohol, the stretchable composite films exhibit a significant strengthening of the mechanical properties (tensile stress up to 59 MPa, elongation at break >400%) and an unprecedented stress-responsive luminescence enhancement that over fourfold fluorescent emission intensity is maintained upon stretching up to 100%. On the basis of computational studies, the unique photophysical and mechanical properties are attributed to the substitution of carbonyl chromophores on the pyrrole unit.


Asunto(s)
Cobre , Polímeros , Pirroles , Pirroles/química , Cobre/química , Catálisis , Polímeros/química , Polímeros/síntesis química , Estructura Molecular , Reacción de Cicloadición
16.
Anal Methods ; 16(8): 1196-1205, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38312040

RESUMEN

In the present study, an efficient and rapid method for the preparation of high-purity typical alkylamides from Zanthoxylum bungeanum (Z. bungeanum) pericarps using medium-pressure liquid chromatography (MPLC) was developed. Under the optimized conditions using a mobile phase of methanol : water (70 : 30, v/v) at a flow rate of 25 mL min-1 and one run for 30 min, hydroxy-α-sanshool with a purity of 97.85% could be obtained. Sensory evaluation and electronic tongue analysis of the hydroxyl-α-sanshool were performed, and the aftertastes of bitterness and astringency were found to be more representative of the compounds in Chinese prickly ash that causes numbness, which has not been reported in the literature before. An electronic tongue prediction model for the evaluation of numbing intensity was established: Y = 20.452X1 - 7.594X2 - 2.876, R2 = 0.973, where Y is a sensory evaluation value based on the 15 cm linear scale method and X1 and X2 are the aftertastes from astringency and bitterness, respectively. The evaluation model can be used for the evaluation of the numbing intensity of amides of Zanthoxylum bungeanum.


Asunto(s)
Amidas , Zanthoxylum , Zanthoxylum/química , Hipoestesia , Nariz Electrónica , Cromatografía Liquida
17.
Inorg Chem ; 63(6): 3199-3206, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38286822

RESUMEN

A deep insight into surface structural evolution of the catalyst is a challenging issue to reveal the structure-activity relationship. In this contribution, based on a surface alloying strategy, the dual-functional Pd@NiPd catalyst with a unique core-shell hierarchical structure is developed through selective crystal growth, surface cocrystallization, directional self-assembly, and reduction process. The surface defects are created in situ on the outer NiPd alloy layer in the electrochemical redox processes, which endow the Pd@NiPd catalyst with excellent electrocatalytic activity of hydrogen generation reaction (HER) and oxygen generation reaction (OER) in alkaline media. The optimal Pd@NiPd-2 catalyst requires an overpotential of only 18 mV that is far lower than Pt/C benchmark (43 mV) at the current density of 10 mA cm-2 for the HER, and 210 mV that is far lower than RuO2 benchmark (430 mV) at 50 mA cm-2 for the OER. Density functional theory (DFT) calculations reveal that the outstanding electrocatalytic activity is originated from the creation of surface defect structure that induces a significant reduction in the adsorption and dissociation energy barriers of H2O molecules in the HER and a decrease in the conversion energy from O* to OOH* that resulted from the synergy of two adjacent Pd sites by forming O-bridge. This work affords a typical paradigm for exploiting efficient catalysts and investigating the dependence of electrocatalytic activity on the surface structural evolution.

18.
Molecules ; 29(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38202850

RESUMEN

As an important barrier between the cytoplasm and the microenvironment of the cell, the cell membrane is essential for the maintenance of normal cellular physiological activities. An abnormal cell membrane is a crucial symbol of body dysfunction and the occurrence of variant diseases; therefore, the visualization and monitoring of biomolecules associated with cell membranes and disease markers are of utmost importance in revealing the biological functions of cell membranes. Due to their biocompatibility, programmability, and modifiability, DNA nanomaterials have become increasingly popular in cell fluorescence imaging in recent years. In addition, DNA nanomaterials can be combined with the cell membrane in a specific manner to enable the real-time imaging of signal molecules on the cell membrane, allowing for the real-time monitoring of disease occurrence and progression. This article examines the recent application of DNA nanomaterials for fluorescence imaging on cell membranes. First, we present the conditions for imaging DNA nanomaterials in the cell membrane microenvironment, such as the ATP, pH, etc. Second, we summarize the imaging applications of cell membrane receptors and other molecules. Finally, some difficulties and challenges associated with DNA nanomaterials in the imaging of cell membranes are presented.


Asunto(s)
Neoplasias , Imagen Óptica , Humanos , Membrana Celular , Membranas , Citoplasma , Colorantes , ADN , Neoplasias/diagnóstico por imagen , Microambiente Tumoral
19.
Ren Fail ; 46(1): 2296609, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38178573

RESUMEN

This study aimed to investigate the correlation between ultrafiltration rate (UFR) and hemoglobin levels and erythropoietin (EPO) response in patients receiving maintenance hemodialysis (MHD). 225 MHD patients were divided into three groups according to the UFR: < 10 ml/h/kg, 10-13 ml/h/kg, and >13 ml/h/kg. Clinical parameters and prognosis were compared among the groups. Multiple linear correlation and regression analyses were conducted. SPSS 26.0 (IBM, Chicago, IL, USA) was used to analyze all statistics. The UFR < 10 ml/h/kg group was older than the other groups (p < 0.05). The UFR > 13 ml/h/kg group had the highest SpKt/V (p < 0.05), monthly EPO dose/weight (p < 0.001), and EPO resistance index (p < 0.001), as well as the lowest dry weight (p < 0.001), BMI (p < 0.001), hemoglobin (p < 0.001), hematocrit (p < 0.05), and red blood cell count (p < 0.05). Multiple linear regression analysis showed that sex, dry weight, UFR, calcium, phosphorus, albumin, and C-reactive protein levels were associated with hemoglobin levels. Multivariate logistic regression analysis revealed that a higher UFR was associated with lower hemoglobin levels, while male sex and higher levels of calcium and albumin were associated with higher hemoglobin levels. High UFR is associated with more severe anemia and EPO resistance in MHD. This study provides new insights into anemia management in patients undergoing hemodialysis.


Asunto(s)
Anemia , Eritropoyetina , Fallo Renal Crónico , Humanos , Masculino , Ultrafiltración , Calcio , Diálisis Renal/efectos adversos , Eritropoyetina/uso terapéutico , Epoetina alfa , Hemoglobinas , Albúminas
20.
ACS Biomater Sci Eng ; 10(2): 814-824, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38226596

RESUMEN

Cultivated meat production is a promising technology to generate meat while reducing the reliance on traditional animal farming. Biomaterial scaffolds are critical components in cultivated meat production, enabling cell adhesion, proliferation, differentiation, and orientation. In the present work, naturally derived glutenin was fabricated into films with and without surface patterning and in the absence of toxic cross-linking or stabilizing agents for cell culture related to cultivated meat goals. The films were stable in culture media for at least 28 days, and the surface patterns induced cell alignment and guided myoblast organization (C2C12s) and served as a substrate for 3T3-L1 adipose cells. The films supported adhesion, proliferation, and differentiation with mass balance considerations (films, cells, and matrix production). Freeze-thaw cycles were applied to remove cells from glutenin films and monitor changes in glutenin mass with respect to culture duration. Extracellular matrix (ECM) extraction was utilized to quantify matrix deposition and changes in the original biomaterial mass over time during cell cultivation. Glutenin films with C2C12s showed mass increases with time due to cell growth and new collagen-based ECM expression during proliferation and differentiation. All mass balances were compared among cell and noncell systems as controls, along with gelatin control films, with time-dependent changes in the relative content of film, matrix deposition, and cell biomass. These data provide a foundation for cell/biomaterial/matrix ratios related to time in culture as well as nutritional and textural features.


Asunto(s)
Materiales Biocompatibles , Carne in Vitro , Animales , Glútenes/química , Músculos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA