Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
1.
Sci Rep ; 14(1): 12805, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834642

RESUMEN

The cast thin sections of tight oil reservoirs contain important parameters such as rock mineral composition and content, porosity, permeability and stratigraphic characteristics, which are of great significance for reservoir evaluation. The use of deep learning technology for intelligent identification of thin section images is a development trend of mineral identification. However, the difficulty of making cast thin sections, the complexity of the making process and the high cost of thin section annotation have led to a lack of cast thin section images, which cannot meet the training requirements of deep learning image recognition models. In order to increase the sample size and improve the training effect of deep learning model, we proposed a generation and annotation method of thin section images of tight oil reservoir based on deep learning, by taking Fuyu reservoir in Sanzhao Sag as the target area. Firstly, the Augmentor strategy space was used to preliminarily augment the original images while preserving the original image features to meet the requirements of the model. Secondly, the category attention mechanism was added to the original StyleGAN network to avoid the influence of the uneven number of components in thin sections on the quality of the generated images. Then, the SALM annotation module was designed to achieve semi-automatic annotation of the generated images. Finally, experiments on image sharpness, distortion, standard accuracy and annotation efficiency were designed to verify the advantages of the method in image quality and annotation efficiency.

2.
Small ; : e2401566, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752437

RESUMEN

Ultrathin carbon nitride pioneered a paradigm that facilitates effective charge separation and acceleration of rapid charge migration. Nevertheless, the dissociation process confronts a disruption owing to the proclivity of carbon nitride to reaggregate, thereby impeding the optimal utilization of active sites. In response to this exigency, the adoption of a synthesis methodology featuring alkaline potassium salt-assisted molten salt synthesis is advocated in this work, aiming to craft a nitrogenated graphitic carbon nitride (g-C3N5) photocatalyst characterized by thin layer and hydrophilicity, which not only amplifies the degree of crystallization of g-C3N5 but also introduces a plethora of abundant edge active sites, engendering a quasi-homogeneous photocatalytic system. Under visible light irradiation, the ultra-high H2O2 production rate of this modified high-crystalline g-C3N5 in pure water attains 151.14 µm h-1. This groundbreaking study offers a novel perspective for the innovative design of highly efficient photocatalysts with a quasi-homogeneous photocatalytic system.

3.
J Colloid Interface Sci ; 670: 428-438, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38772259

RESUMEN

Although photocatalytic H2 production based on semiconductor materials has a wide potential application, it still facing challenges such as slow reaction kinetics or complex synthesis processes. To meet these challenges, the carbon dots loaded black g-C3N4 (CN-B-CDs) was synthesized by simple calcination method to achieve efficient photothermal-assisted photocatalytic H2 production. Photothermal imaging experiments confirmed the photothermal effect of CN-B and CDs as dual heat sources to increase the temperature of the composite system, thus improving the effective separation of photo-generated charges. In addition, multiple photocatalytic H2 production tests exhibited that CN-B-CDs photocatalysts not only have strong stability but also can accommodate a variety of complex water bodies, which displayed the potential for industrial application. This study combined the photothermal effect and the mechanism by which the CDs promote the charge transfer to design a new photocatalytic H2 production system and provided a new scheme for achieving efficient photothermal-assisted photocatalytic H2 production using carbon-based materials.

4.
Chem Commun (Camb) ; 60(44): 5747-5750, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38747111

RESUMEN

CoO/Fe3O4 nanosheets exhibit a superior rechargeable zinc-air battery (ZAB) performance of 276 mW cm-2 and stability over 600 h. The all-solid-state ZAB also affords a high power density of 107 mW cm-2.

5.
Food Chem ; 451: 139502, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701732

RESUMEN

In this study, the correlation between protein phosphorylation and deterioration in the quality of tilapia during storage in ice was examined by assessing changes in texture, water-holding capacity (WHC), and biochemical characteristics of myofibrillar protein throughout 7 days of storage. The hardness significantly decreased from 471.50 to 252.17 g, whereas cooking and drip losses significantly increased from 26.5% to 32.6% and 2.9% to 9.1%, respectively (P < 0.05). Myofibril fragmentation increased, while myofibrillar protein sulfhydryl content and Ca2+-ATPase activity decreased from 119.33 to 89.29 µmol/g prot and 0.85 to 0.46 µmolPi/mg prot/h, respectively (P < 0.05). Correlation analysis revealed that the myofibrillar protein phosphorylation level was positively correlated with hardness and Ca2+-ATPase activity but negatively correlated with WHC. Myofibrillar protein phosphorylation affects muscle contraction by influencing the dissociation of actomyosin, thereby regulating hardness and WHC. This study provides novel insights for the establishment of quality control strategies for tilapia storage based on protein phosphorylation.


Asunto(s)
Proteínas de Peces , Almacenamiento de Alimentos , Hielo , Proteínas Musculares , Miofibrillas , Tilapia , Animales , Fosforilación , Tilapia/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/química , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Hielo/análisis , Miofibrillas/química , Miofibrillas/metabolismo , Alimentos Marinos/análisis
6.
Food Res Int ; 187: 114456, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763686

RESUMEN

Single starter can hardly elevate the gel property of fermented freshwater fish sausage. In this work, in order to improve the physical properties of tilapia sausage, two newly isolated strains of lactic acid bacteria (LAB), Latilactobacillus sakei and Pediococcus acidilactici were used for cooperative fermentation of tilapia sausage, followed by the revelation of their formation mechanisms during cooperative fermentation and their improvement mechanisms after comparison with natural fermentation. Both strains, especially L. sakei possessed good growth, acidification ability, and salt tolerance. The gel strength, hardness, springiness, chewiness, whiteness, acidification, and total plate count significantly elevated during cooperative fermentation with starters. Pediococcus, Acinetobacter, and Macrococcus were abundant before fermentation, while Latilactobacillus quickly occupied the dominant position after fermentation for 18-45 h with the relative abundance over 51.5 %. The influence of each genus on the physical properties was calculated through the time-dimension and group-dimension correlation networks. The results suggested that the increase of Latilactobacillus due to the good growth and metabolism of L. sakei contributed the most to the formation and improvement of gel strength, texture properties, color, acidification, and food safety of tilapia sausage after cooperative fermentation. This study provides a novel analysis method to quantitatively evaluate the microbial contribution on the changes of various properties. The cooperative fermentation of LAB can be used for tilapia sausage fermentation to improve its physical properties.


Asunto(s)
Fermentación , Productos Pesqueros , Microbiología de Alimentos , Tilapia , Animales , Tilapia/microbiología , Productos Pesqueros/microbiología , Concentración de Iones de Hidrógeno , Latilactobacillus sakei/metabolismo , Lactobacillales/metabolismo , Lactobacillales/aislamiento & purificación , Lactobacillales/crecimiento & desarrollo , Pediococcus acidilactici/metabolismo , Alimentos Fermentados/microbiología , Productos de la Carne/microbiología
7.
Molecules ; 29(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611795

RESUMEN

Heterogeneous photocatalysis-self-Fenton technology is a sustainable strategy for treating organic pollutants in actual water bodies with high-fluent degradation and high mineralization capacity, overcoming the limitations of the safety risks caused by adding external iron sources and hazardous chemicals in the homogeneous Fenton reaction and injecting high-intensity energy fields in photo-Fenton reaction. Herein, a photo-self-Fenton system based on resorcinol-formaldehyde (RF) resin and red mud (RM) was established to generate hydrogen peroxide (H2O2) in situ and transform into hydroxy radical (•OH) for efficient degradation of tetracycline (TC) under visible light irradiation. The capturing experiments and electron spin resonance (ESR) confirmed that the hinge for the enhanced performance of this system is the superior H2O2 yield (499 µM) through the oxygen reduction process (ORR) of the two-step single-electron over the resin and the high concentration of •OH due to activation effect of RM. In addition, the Fe2+/Fe3+ cycles are accelerated by photoelectrons to effectively initiate the photo-self-Fenton reaction. Finally, the possible degradation pathways were proposed via liquid chromatography-mass spectrometry (LC-MS). This study provides a new idea for environmental recovery in a waste-based heterogeneous photocatalytic self-Fenton system.

8.
Front Immunol ; 15: 1365591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650947

RESUMEN

Background: systemic inflammation disorders were observed in chronic kidney disease (CKD). Whether the systemic inflammatory indicators could be optimal predictors for the survival of CKD remains less studied. Methods: In this study, participants were selected from the datasets of the National Health and Nutrition Examination Survey (NHANES) between 1999 to 2018 years. Four systemic inflammatory indicators were evaluated by the peripheral blood tests including systemic immune-inflammation index (SII, platelet*neutrophil/lymphocyte), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR). Kaplan-Meier curves, restricted cubic spline (RCS), and Cox regression analysis were used to evaluate the association between the inflammatory index with the all-cause mortality of CKD. Receiver operating characteristic (ROC) and concordance index (C-index) were used to determine the predictive accuracy of varied systemic inflammatory indicators. Sensitive analyses were conducted to validate the robustness of the main findings. Results: A total of 6,880 participants were included in this study. The mean age was 67.03 years old. Among the study population, the mean levels of systemic inflammatory indicators were 588.35 in SII, 2.45 in NLR, 133.85 in PLR, and 3.76 in LMR, respectively. The systemic inflammatory indicators of SII, NLR, and PLR were all significantly positively associated with the all-cause mortality of CKD patients, whereas the high value of LMR played a protectable role in CKD patients. NLR and LMR were the leading predictors in the survival of CKD patients [Hazard ratio (HR) =1.21, 95% confidence interval (CI): 1.07-1.36, p = 0.003 (3rd quartile), HR = 1.52, 95%CI: 1.35-1.72, p<0.001 (4th quartile) in NLR, and HR = 0.83, 95%CI: 0.75-0.92, p<0.001 (2nd quartile), HR = 0.73, 95%CI: 0.65-0.82, p<0.001 (3rd quartile), and = 0.74, 95%CI: 0.65-0.83, p<0.001 (4th quartile) in LMR], with a C-index of 0.612 and 0.624, respectively. The RCS curves showed non-linearity between systemic inflammatory indicators and all-cause mortality risk of the CKD population. Conclusion: Our study highlights that systemic inflammatory indicators are important for predicting the survival of the U.S. population with CKD. The systemic inflammatory indicators would add additional clinical value to the health care of the CKD population.


Asunto(s)
Inflamación , Encuestas Nutricionales , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/mortalidad , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/inmunología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios Prospectivos , Inflamación/sangre , Inflamación/inmunología , Neutrófilos/inmunología , Biomarcadores/sangre , Linfocitos/inmunología , Pronóstico , Monocitos/inmunología
9.
Food Chem ; 449: 139239, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604034

RESUMEN

Single starter can hardly improve the volatile flavor of fermented fish surimi. In this study, the changes of volatile compounds (VCs) and microbial composition during cooperative fermentation of Latilactobacillus sakei and Pediococcus acidilactici were studied by headspace solid-phase microextraction gas chromatography-mass spectrometry and 16S rRNA gene high-throughput sequencing. During cooperative fermentation, most VCs and the abundance of Latilactobacillus and Lactococcus significantly increased, while Pediococcus, Acinetobacter, and Macrococcus obviously decreased. After evaluation of correlation and abundance of each genus, Latilactobacillus and Lactococcus possessed the highest influence on the formation of volatile flavor during cooperative fermentation. Compared with the natural fermentation, cooperative fermentation with starters significantly enhanced most of pleasant core VCs (odor activity value≥1), but inhibited the production of trimethylamine and methanethiol, mainly resulting from the absolutely highest influence of Latilactobacillus. Cooperative fermentation of starters is an effective method to improve the volatile flavor in the fermented tilapia surimi.


Asunto(s)
Fermentación , Productos Pesqueros , Latilactobacillus sakei , Pediococcus acidilactici , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Animales , Pediococcus acidilactici/metabolismo , Productos Pesqueros/análisis , Productos Pesqueros/microbiología , Latilactobacillus sakei/metabolismo , Tilapia/microbiología , Tilapia/metabolismo , Tilapia/crecimiento & desarrollo , Gusto , Aromatizantes/metabolismo , Aromatizantes/química , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Cromatografía de Gases y Espectrometría de Masas
10.
Nanoscale ; 16(19): 9496-9508, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38651386

RESUMEN

"Transition" metal-coordinated plant polyphenols are a type of promising antitumor nanodrugs owing to their high biosafety and catalytic therapy potency; however, the major obstacle restricting their clinical application is their poor tumor accumulation. Herein, Fe-doped ZIF-8 was tailored using tannic acid (TA) into a hollow mesoporous nanocarrier for gallic acid (GA) loading. After hyaluronic acid (HA) modification, the developed nanosystem of HFZIF-8/GA@HA was used for the targeted delivery of Fe ions and GA, thereby intratumorally achieving the synthesis of an Fe-GA coordinated complex. The TA-etching strategy facilitated the development of a cavitary structure and abundant coordination sites of ZIF-8, thus ensuring an ideal loading efficacy of GA (23.4 wt%). When HFZIF-8/GA@HA accumulates in the tumor microenvironment (TME), the framework is broken due to the competitive protonation ability of overexpressed protons in the TME. Interestingly, the intratumoral degradation of HFZIF-8/GA@HA provides the opportunity for the in situ "meeting" of GA and Fe ions, and through the coordination of polyhydroxyls assisted by conjugated electrons on the benzene ring, highly stable Fe-GA nanochelates are formed. Significantly, owing to the electron delocalization effect of GA, intratumorally coordinated Fe-GA could efficiently absorb second near-infrared (NIR-II, 1064 nm) laser irradiation and transfer it into thermal energy with a conversion efficiency of 36.7%. The photothermal performance could speed up the Fenton reaction rate of Fe-GA with endogenous H2O2 for generating more hydroxyl radicals, thus realizing thermally enhanced chemodynamic therapy. Overall, our research findings demonstrate that HFZIF-8/GA@HA has potential as a safe and efficient anticancer nanodrug.


Asunto(s)
Ácido Gálico , Ácido Gálico/química , Ácido Gálico/farmacología , Ratones , Animales , Humanos , Línea Celular Tumoral , Taninos/química , Ácido Hialurónico/química , Hierro/química , Antineoplásicos/química , Antineoplásicos/farmacología , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Microambiente Tumoral/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Catálisis , Portadores de Fármacos/química , Nanopartículas/química , Imidazoles
11.
Cell Signal ; 118: 111144, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493883

RESUMEN

Diabetic nephropathy (DN) is a serious complication of diabetes that causes glomerular sclerosis and end-stage renal disease, leading to ascending morbidity and mortality in diabetic patients. Excessive accumulation of aberrantly modified proteins or damaged organelles, such as advanced glycation end-products, dysfunctional mitochondria, and inflammasomes is associated with the pathogenesis of DN. As one of the main degradation pathways, autophagy recycles toxic substances to maintain cellular homeostasis and autophagy dysregulation plays a crucial role in DN progression. MicroRNA (miRNA) and long non-coding RNA (lncRNA) are non-coding RNA (ncRNA) molecules that regulate gene expression and have been implicated in both physiological and pathological conditions. Recent studies have revealed that autophagy-regulating miRNA and lncRNA have been involved in pathological processes of DN, including renal cell injury, mitochondrial dysfunction, inflammation, and renal fibrosis. This review summarizes the role of autophagy in DN and emphasizes the modulation of miRNA and lncRNA on autophagy during disease progression, for the development of promising interventions by targeting these ncRNAs in this disease.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , MicroARNs , ARN Largo no Codificante , Humanos , Nefropatías Diabéticas/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Riñón/patología , Autofagia/genética
12.
Resusc Plus ; 18: 100618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549695

RESUMEN

Background: Acute blood loss not only leads to systemic compensatory response, but also the induced changes in vascular endothelial function.These pathological changes may have potential compensatory significance for maintaining organ perfusion and fluid resuscitation. Objective: To understand trauma-induced endotheliopathy and their compensatory roles in acute hemorrhage, a porcine model of hemorrhagic shock (HS) was used to evaluate changes in vascular endothelial factors and catecholamine levels at different time points from shock to fluid resuscitation. Methods: HS was induced in female pigs by rapid bleeding via the arterial sheath. Hemodynamic monitoring was performed using a pulse index continuous cardiac output (PiCCO) system in HS and fluid resuscitation. Femoral vein blood samples were collected at baseline and 40% mean arterial pressure (MAP, shock), MAP recovery, and 30 min, 1 h, and 2 h after recovery. Serum levels of catecholamine and Angiopoietin-1 (Ang-1), Angiopoietin-2 (Ang-2), Tie-2, Eselectin, intracellular adhesion molecule-1 (ICAM-1), soluble thrombomodulin (sTM), and Syndecan-1 (SDC-1) were evaluated using enzyme-linked immunosorbent assay (ELISA). Results: Serum catecholamine levels were significantly higher in the shock than in the baseline state. Ang-1 and Ang-2 are endothelial growth factors secreted with distinct roles. Ang-1 stabilizes the endothelium and inhibits vascular leakage, and Ang-2 has the opposite effect. The ratio of Ang-2/Ang-1 was significantly higher in the shock state than in the baseline state; however, the Ang-1/Tie-2 ratio was comparable between the two states. This suggests that changes in vascular permeability may mainly depend on the upregulation of Ang-2 function. Serum levels of E-selectin, ICAM-1, sTM, and SDC-1 were significantly higher in the shock state than in the baseline state. After the MAP was restored to the baseline state, the levels of E-selectin, and SDC-1 remained higher compared with the baseline state until 1 h after MAP recovery. Conclusions: serum levels of catecholamines and vascular endothelial markers increased transiently under HS, promoting a compensatory response of the circulatory system to acute bleeding. This may be one of the potential theoretical basis for restrictive fluid resuscitation.

14.
Environ Sci Pollut Res Int ; 31(19): 28210-28224, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532214

RESUMEN

Iron-based catalysts are environmentally friendly, and iron minerals are abundant in the earth's crust, with great potential advantages for PMS-based advanced oxidation process applications. However, homogeneous Fe2+/PMS systems suffer from side reactions and are challenging to reuse. Therefore, developing catalysts with improved stability and activity is a long-term goal for practical Fe-based catalyst applications. In this study, we prepared Fe-HNTs nanoreactors by encapsulating a nitrogen-doped carbon layer with one-dimensional halloysite nanotubes (HNTs) using the molten salt-assisted method. Subsequently, Fe (Co, Ni) nanoclusters were anchored onto the nitrogen-doped carbon layer at a relatively low temperature (550℃), resulting in stable and uniform distribution of metal nanoclusters on the surface of HNTs carriers in the form of Fe-Nx coordination. The results showed that the dissolution of the molten salt and leaching of post-treated metal oxides generated numerous mesopores within the Fe-HNTs nanoreactor, leading to a specific surface area more than 10 times that of HNTs. This enhanced mass transfer capability facilitates rapid pollutant removal while exposing more active sites. Remarkably, Fe-HNTs adsorbed up to 97% of tetracycline within 60 min. In the Fe-HNTs/PMS system, the predominant reactive oxygen species has been shown to be 1O2, and the added tetracycline was degraded by more than 98% within 5 min. The removal of tetracycline was maintained above 96% in the presence of interfering factors such as wide pH (3-11) and inorganic anions (5 mM Cl-, HCO3-, NO3-, and SO42-). The investigated mechanism suggests that efficient degradation and interference resistance of the Fe-HNTs/PMS system is attributed to the synergistic effect between the rapid adsorption of porous structure and the non-radical (1O2)-dominated degradation pathway.


Asunto(s)
Hierro , Nanotubos , Tetraciclina , Nanotubos/química , Tetraciclina/química , Catálisis , Hierro/química , Arcilla/química , Níquel/química , Oxidación-Reducción , Cobalto/química
15.
Artículo en Inglés | MEDLINE | ID: mdl-38427062

RESUMEN

OBJECTIVE: This study aimed to utilize a hemorrhagic shock pig model to compare two hemodynamic monitoring methods, pulse index continuous cardiac output (PiCCO) and spectral carotid artery Doppler ultrasound (CDU). Additionally, we sought to explore the feasibility of employing CDU as a non-invasive hemodynamic monitoring tool in the context of hemorrhagic shock and fluid resuscitation. DESIGN: Animal experiments. SETTING AND SUBJECTS: Female pigs were selected, and hemorrhagic shock was induced by rapid bleeding through an arterial sheath. INTERVENTIONS: Hemodynamic monitoring was conducted using both PiCCO and CDU during episodes of hemorrhagic shock and fluid resuscitation. MEASUREMENTS AND MAIN RESULTS: Among the 10 female pigs studied, CDU measurements revealed a significant decrease in carotid velocity time integral (cVTI) compared to baseline values under shock conditions. During the resuscitation phase, after the mean arterial pressure (MAP) returned to its baseline level, there was no significant difference between cVTI and baseline values. A similar trend was observed for carotid peak velocity (cPV). The corrected flow time (FTc) exhibited a significant difference only at the time of shock compared to baseline values. In comparison to PiCCO, there was a significant correlation between cVTI and MAP (r = 0.616, P < 0.001), stroke volume (SV) (r = 0.821, P < 0.001), and cardiac index (CI) (r = 0.698, P < 0.001). The carotid Doppler shock index (cDSI) displayed negative correlations with MAP (r = - 0.593, P < 0.001), SV (r = - 0.761, P < 0.001), and CI (r = - 0.548, P < 0.001), while showing a positive correlation with the shock index (SI) (r = 0.647, P < 0.001). CONCLUSIONS: Compared to PiCCO, CDU monitoring can reliably reflect the volume status of hemorrhagic shock and fluid resuscitation. CDU offers the advantages of being non-invasive, providing real-time data, and being operationally straightforward. These characteristics make it a valuable tool for assessing and managing hemorrhagic shock, especially in resource-limited settings.

17.
Chem Sci ; 15(6): 2236-2242, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38332812

RESUMEN

Unprecedented regioselective trans-hydroboration and carboboration of unbiased electronically internal alkynes were realized via a nickel catalysis system with the aid of the directing group strategy. Furthermore, the excellent α- and ß-regioselectivity could be accurately switched by the nitrogen ligand (terpy) and phosphine ligand (Xantphos). Mechanistic studies provided an insight into the rational reaction process, that underwent the cis-to-trans isomerization of alkenyl nickel species. This transformation not only expands the scope of transition-metal-catalyzed boration of internal alkynes but also, more particularly, portrays the vast prospects of the directing group strategy in the selective functionalization of unactivated alkynes.

18.
Skin Res Technol ; 30(2): e13611, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348734

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) and psoriasis (Ps) are common immune-mediated diseases that exhibit clinical comorbidity, possibly due to a common genetic structure. However, the exact mechanism remains unknown. METHODS: The study population consisted of IBD and Ps genome-wide association study (GWAS) data. Genetic correlations were first evaluated. Then, the overall evaluation employed LD score regression (LDSC), while the local assessment utilized heritability estimation from summary statistics (HESS). Causality assessment was conducted through two-sample Mendelian randomization (2SMR), and genetic overlap analysis utilized the conditional false discovery rate/conjunctional FDR (cond/conjFDR) method. Finally, LDSC applied to specifically expressed genes (LDSC-SEG) was performed at the tissue level. For IBD and Ps-specific expressed genes, genetic correlation, causality, shared genetics, and trait-specific associated tissues were methodically examined. RESULTS: At the genomic level, both overall and local genetic correlations were found between IBD and Ps. MR analysis indicated a positive causal relationship between Ps and IBD. The conjFDR analysis with a threshold of < 0.01 identified 43 loci shared between IBD and Ps. Subsequent investigations into disease-associated tissues indicated a close association of IBD and Ps with whole blood, lung, spleen, and EBV-transformed lymphocytes. CONCLUSION: The current research offers a novel perspective on the association between IBD and Ps. It contributes to an enhanced comprehension of the genetic structure and mechanisms of comorbidities in both diseases.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Psoriasis , Humanos , Estudio de Asociación del Genoma Completo , Psoriasis/genética , Piel , Enfermedades Inflamatorias del Intestino/genética , Expresión Génica
19.
Langmuir ; 40(9): 4852-4859, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38382061

RESUMEN

Transition metal oxides with the merits of high theoretical capacities, natural abundance, low cost, and environmental benignity have been regarded as a promising anodic material for lithium ion batteries (LIBs). However, the severe volume expansion upon cycling and poor conductivity limit their cycling stability and rate capability. To address this issue, NiO embedded and N-doped porous carbon nanorods (NiO@NCNR) and nanotubes (NiO@NCNT) are synthesized by the metal-catalyzed graphitization and nitridization of monocrystalline Ni(II)-triazole coordinated framework and Ni(II)/melamine mixture, respectively, and the following oxidation in air. When applied as an anodic material for LIBs, the NiO@NCNR and NiO@NCNT hybrids exhibit a decent capacity of 895/832 mA h g-1 at 100 mA g-1, high rate capability of 484/467 mA h g-1 at 5.0 A g-1, and good long-term cycling stability of 663/634 mA h g-1 at 600th cycle at 1 A g-1, which are much better than those of NiO@carbon black (CB) control sample (701, 214, and 223 mA h g-1). The remarkable electrochemical properties benefit from the advanced nanoarchitecture of NiO@NCNR and NiO@NCNT, which offers a length-controlled one-dimensional porous carbon nanoarchitecture for effective e-/Li+ transport, affords a flexible carbon skeleton for spatial confinement, and forms abundant nanocavities for stress buffering and structure reinforcement during discharge/charging processes. The rational structural design and synthesis may pave a way for exploring advanced metal oxide based anodic materials for next-generation LIBs.

20.
Nano Lett ; 24(9): 2876-2884, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38385324

RESUMEN

Upconversion (UC)/downconversion (DC)-luminescent lanthanide-doped nanocrystals (LDNCs) with near-infrared (NIR, 650-1700 nm) excitation have been gaining increasing popularity in bioimaging. However, conventional NIR-excited LDNCs cannot be degraded and eliminated eventually in vivo owing to intrinsic "rigid" lattices, thus constraining clinical applications. A biodegradability-tunable heterogeneous core-shell-shell luminescent LDNC of Na3HfF7:Yb,Er@Na3ZrF7:Yb,Er@CaF2:Yb,Zr (abbreviated as HZC) was developed and modified with oxidized sodium alginate (OSA) for multimode bioimaging. The dynamic "soft" lattice-Na3Hf(Zr)F7 host and the varying Zr4+ doping content in the outmoster CaF2 shell endowed HZC with tunable degradability. Through elaborated core-shell-shell coating, Yb3+/Er3+-coupled UC red and green and DC second near-infrared (NIR-II) emissions were, respectively, enhanced by 31.23-, 150.60-, and 19.42-fold when compared with core nanocrystals. HZC generated computed tomography (CT) imaging contrast effects, thus enabling NIR-II/CT/UC trimodal imaging. OSA modification not only ensured the exemplary biocompatibility of HZC but also enabled tumor-specific diagnosis. The findings would benefit the clinical imaging translation of LDNCs.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Hafnio , Circonio , Nanopartículas/química , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA