RESUMEN
Proton-exchange-membrane fuel cells demand highly efficient catalysts for the oxygen reduction reaction, and core-shell structures are known for maximizing precious metal utilization. Here, we reported a controllable "carbon defect anchoring" strategy to prepare Pt1Ni1@Pt/C core-shell nanoparticles with an average size of ~2.6 nm on an in-situ transformed defective carbon support. The strong Pt-C interaction effectively inhibits nanoparticle migration or aggregation, even after undergoing stability tests over 70,000 potential cycles, resulting in only 1.6% degradation. The stable Pt1Ni1@Pt/C catalysts have high oxygen reduction reaction mass activity and specific activity that reach 1.424 ± 0.019 A/mgPt and 1.554 ± 0.027 mA/cmPt2 at 0.9 V, respectively, attributed to the optimal compressive strain. The experimental results are generally consistent with the theoretical predictions made by our comprehensive microkinetic model which incorporates essential kinetics and thermodynamics of oxygen reduction reaction. The consistent results obtained in our study provide compelling evidence for the high accuracy and reliability of our model. This work highlights the synergy between theory-guided catalyst design and appropriate synthetic methodologies to translate the theory into practice, offering valuable insights for future catalyst development.
RESUMEN
The reduction of nitrate into valuable ammonia via electrocatalysis offers a green and sustainable synthetic pathway for ammonia. The electrocatalytic nitrate reduction reaction (NO3RR) encompasses two crucial reaction steps: nitrate deoxygenation and nitrite hydrogenation. Notably, the nitrite hydrogenation reaction is regarded as the rate-determining step of the process. Herein, the amorphous CoO support introduced for the construction of the a-CoO/Cu2O tandem catalyst provides sufficient active hydrogen and synergistically catalyzes the NO3RR. The a-CoO/Cu2O catalyst showed excellent performance with a maximum NH3 Faradaic efficiency of 95.72% and a maximum yield rate of 0.96 mmol h-1 mgcat -1 at -0.4 V. In the flow cell, the maximum NH3 yield rate of 12.14 mmol h-1 mgcat -1 is achieved at -800 mA. The high NO3RR activity of a-CoO/Cu2O is attributed to the synergistic cascade effect of amorphous CoO and Cu2O at the heterojunction interface, where Cu2O serves as the adsorption site for NO3 -, while the accelerated active hydrogen generation of amorphous CoO promotes the nitrite hydrogenation reaction. This work provides a strategy for designing multi-site cascade catalysts centered on amorphous structures to achieve efficient NO3RR.
RESUMEN
How to achieve controllable preparation of heterostructure and in-situ optimize the interface and internal electron transfer by a fast and economic synthesis method has become a big challenge in the practical application of photocatalysis. Herein, an island-shaped SrTiO3 (STO) perovskite nanodots and TiO2 (T) compounded S-scheme SrTiO3/TiO2 (ST) heterostructure was successfully developed. During the millisecond reaction process, the decomposed Sr2+ penetrated into the TiO2 lattice causing the lattice expansion and inducing local atomic rearrangements, resulting in the generation of STO phase. Owing to the synergy of the efficient electron transport at the perovskite nanodots interface and the stronger reduction capacity, the performance of the optimized ST1 sample is greatly improved to 86.90 µmol g-1 for CO2-to-CO and 21.31 µmol g-1 for CO2-to-CH4. The utilization of electrons reached up to 119.74 µmol g-1 h-1, which was 3.13 times higher than that of T. Detailed characterizations and density functional theory (DFT) calculations proof that the formation of intermediates HCOO- and CO32- is the key to the performance improvement critically. Overall, this work originally reports a feasible strategy for flame synthesis of S-scheme heterostructure photocatalyst.
RESUMEN
Ultrahigh-Ni layered oxide cathodes are the leading candidate for next-generation high-energy Li-ion batteries owing to their cost-effectiveness and ultrahigh capacity. However, the increased Ni content causes larger volume variations and worse lattice oxygen stability during cycling, resulting in capacity attenuation and kinetics hysteresis. Herein, a Li2SiO3-coated Li(Ni0.95Co0.04Mn0.01)0.99B0.01O2 ultrahigh-Ni cathode that well-addresses all the above issues, which is also the first time to realize the real doping of B ions is demonstrated. The as-obtained cathode delivers a reversible capacity of up to 237.4 mAh g-1 (924 Wh kg-1 cathode) and a superior capacity retention of 84.2% after 500 cycles at 1C in pouch-type full-cells. Advanced characterizations and calculations verify that the boron-doping is existed in terms of 3-coordinate and 4-coordinate configurations and their high electrochemical reversibility during de-/lithiation, which greatly stabilizes oxygen anions and impedes Ni-ion migration to Li layer. Furthermore, the B-doping engineers the primary particle microstructure for better relaxing the lattice strain and accelerating Li-ion diffusion. This work advances the energy density of cathode materials into the domain of above 900 Wh kg-1, and the concept will inspire more intensive study on ultrahigh-Ni cathodes.
RESUMEN
Zinc bromine flow battery (ZBFB) is a promising battery technology for stationary energy storage. However, challenges specific to zinc anodes must be resolved, including zinc dendritic growth, hydrogen evolution reaction, and the occurrence of "dead zinc". Traditional additives suppress side reactions and zinc dendrite formation by altering the solvation structure of Zn2+ and adsorbing onto the zinc surface through only a limited number of zincophilic sites, resulting in weak adsorption on zinc metal and potential inability to simultaneously optimize the solvation structure of zinc ions. Obviously, increasing the number of potential zincophilic sites in the additive can significantly enhance the interaction with zinc. Herein, we propose a strong chelate, ethylenediamine tetramethylene phosphonic acid (EDTMPA) as the additive, which boasts six potent zincophilic sites, not only promotes the formation of the water-deficient inner Helmholtz plane but also plays a crucial role in restructuring the solvation environment of Zn2+. As a result, the zinc symmetric flow battery with EDTMPA exhibited exceptional coulombic efficiency of 99.4% over 800 cycles, surpassing the previous studies by a significant margin. Furthermore, the assembled ZBFB has showcased a dendrite-free and enduring cycling over 400 cycles at 80 mA cm-2.
RESUMEN
Acidic CO2 electrolysis offers a promising strategy to achieve high carbon utilization and high energy efficiency. However, challenges still remain in suppressing the competitive hydrogen evolution reaction (HER) and improving product selectivity. Although high concentrations of potassium ions (K+) can suppress HER and accelerate CO2 reduction, they still inevitably suffer from salt precipitation problems. In this study, we demonstrate that the sulfonate-based polyelectrolyte, polystyrene sulfonate (PSS), enables to reconstruct the electrode-electrolyte interface to significantly enhance the acidic CO2 electrolysis. Mechanistic studies reveal that PSS induces high local K+ concentrations through the electrostatic interaction between PSS anions and K+. In situ spectroscopy reveals that PSS reshapes the interfacial hydrogen-bond (H-bond) network, which is attributed to the H-bonds between PSS anions and hydrated proton, as well as the steric hindrance of the additive molecules. This greatly weakens proton transfer kinetics and leads to the suppression of undesirable HER. As a result, a Faradaic efficiency of 93.9 % for CO can be achieved at 250â mA cm-2, simultaneous with a high single-pass carbon efficiency of 72.2 % on commercial Ag catalysts in acid. This study highlights the important role of the electrode-electrolyte interface induced by polyelectrolyte additives in promoting electrocatalytic reactions.
RESUMEN
The oxygen evolution reaction (OER) performance of ruthenium-based oxides strongly correlates with the electronic structures of Ru. However, the widely adopted monometal doping method unidirectionally regulates only the electronic structures, often failing to balance the activity and stability. Here, we propose an "elastic electron transfer" strategy to achieve bidirectional optimization of the electronic structures of Sr, Cr codoped RuO2 catalysts for acidic OER. The introduction of electron-withdrawing Sr intrinsically activates the Ru sites by increasing the oxidation state of Ru. Simultaneously, Cr acts as an electron buffer, donating electrons to Ru in the presence of Sr in the as-prepared catalysts and absorbing excess electrons from Sr leaching during the OER. Such a bidirectional regulation feature of Cr prevents overoxidation of Ru and maintains its high oxidation state during the OER. The optimal Ru3Cr1Sr0.175 catalyst exhibits a low overpotential (214 mV @ 10 mA cm-2) and excellent stability (over 300 h).
RESUMEN
Recycling spent lithium-ion batteries (LIBs) to efficient water-splitting electrocatalysts is a promising and sustainable technology route for green hydrogen production by renewables. In this work, a fluorinated ternary metal oxide (F-TMO) derived from spent LIBs was successfully converted to a robust water oxidation catalyst for pure water electrolysis by utilizing an anion-exchange membrane. The optimized catalyst delivered a high current density of 3.0 A cm-2 at only 2.56 V and a durability of >300 h at 0.5 A cm-2, surpassing the noble-metal IrO2 catalyst. Such excellent performance benefits from an artificially endowed interface layer on the F-TMO, which renders the exposure of active metal (oxy)hydroxide sites with a stabilized configuration during pure water operation. Compared to other metal oxides (i.e., NiO, Co3O4, MnO2), F-TMO possesses a higher stability number of 2.4 × 106, indicating its strong potential for industrial applications. This work provides a feasible way of recycling waste LIBs to valuable electrocatalysts.
RESUMEN
Conventional strategies for highly selective and active hydrogen peroxide (H2O2) electrosynthesis primarily focus on catalyst design. Electrocatalytic reactions take place at the electrified electrode-electrolyte interface. Well-designed electrolytes, when combined with commercial catalysts, can be directly applied to high-efficiency H2O2 electrosynthesis. However, the role of electrolyte components is equally crucial but is significantly under-researched. In this study, anionic surfactant n-tetradecylphosphonic acid (TDPA) and its analogs are used as electrolyte additives to enhance the selectivity of the two-electron oxygen reduction reaction. Mechanistic studies reveal that TDPA assembled over the electrode-electrolyte interface modulates the electrical double-layer structure, which repels interfacial water and weakens the hydrogen-bond network for proton transfer. Additionally, the hydrophilic phosphonate moiety affects the coordination of water molecules in the solvation shell, thereby directly influencing the proton-coupled kinetics at the interface. The TDPA-containing catalytic system achieves a Faradaic efficiency of H2O2 production close to 100% at a current density of 200 mA cm-2 using commercial carbon black catalysts. This research provides a simple strategy to enhance H2O2 electrosynthesis by adjusting the interfacial microenvironment through electrolyte design.
RESUMEN
Both the catalyst and electrolyte deeply impact the performance of the carbon dioxide reduction reaction (CO2RR). It remains a challenge to design the electrolyte compositions for promoting the CO2RR. Here, typical anionic surfactants, dodecylphosphonic acid (DDPA) and its analogues, are employed as electrolyte additives to tune the catalysis interface where the CO2RR occurs. Surprisingly, the anionic surfactant-tailored interfacial microenvironment enables a set of typical commercial catalysts for the CO2RR to deliver a significantly enhanced selectivity of carbon products in both neutral and acidic electrolytes. Mechanistic studies disclose that the DDPA addition restructures the interfacial hydrogen-bond environment via increasing the weak H-bonded water, thus promoting the CO2 protonation to CO. Specifically, in an H-type cell, the Faradaic efficiency of CO increases from 70 to 98% at -1.0 V versus the reversible hydrogen electrode. Furthermore, in a flow cell, the DDPA-containing electrolyte maintains over 90% FECO from 50-400 mA cm-2. Additionally, this electrolyte modulation strategy can be extended to acidic CO2RR with a pH of 1.5-3.5.
RESUMEN
Both the catalyst and electrolyte strongly impact the performance of CO2 electrolysis. Despite substantial progress in catalysts, it remains highly challenging to tailor electrolyte compositions and understand their functions at the catalyst interface. Here, we report that the ethylenediaminetetraacetic acid (EDTA) and its analogs, featuring strong Lewis acid-base interaction with metal cations, are selected as electrolyte additives to reshape the catalyst-electrolyte interface for promoting CO2 electrolysis. Mechanistic studies reveal that EDTA molecules are dynamically assembled toward interface regions in response to bias potential due to strong Lewis acid-base interaction of EDTA4--K+. As a result, the original hydrogen-bond network among interfacial H2O is disrupted, and a hydrogen-bond gap layer at the electrified interface is established. The EDTA-reshaped K+ solvation structure promotes the protonation of *CO2 to *COOH and suppressing *H2O dissociation to *H, thereby boosting the co-electrolysis of CO2 and H2O toward carbon-based products. In particular, when 5 mM of EDTA is added into the electrolytes, the Faradaic efficiency of CO on the commercial Ag nanoparticle catalyst is increased from 57.0% to 90.0% at an industry-relevant current density of 500 mA cm-2. More importantly, the Lewis-base ligand-reshaped interface allows a range of catalysts (Ag, Zn, Pd, Bi, Sn, and Cu) to deliver substantially increased selectivity of carbon-based products in both H-type and flow-type electrolysis cells.
RESUMEN
The practical application of lithium-sulfur batteries with high theoretical energy density and readily available cathode active materials is hampered by problems such as sulfur insulation, dramatic volume changes, and polysulfide shuttling. The targeted development of novel binders is the most industrialized solution to the problem of sulfur cathodes. Herein, an aqueous conductive emulsion binder with the sulfonate-containing hard elastic copolymer core and the conjugate polymer shell, which is capable of forming a bicontinuous mesoscopic interpenetrating polymer network, is synthesized and investigated. Not only can the elastic skeleton formed by the copolymer bind the active substance under drastic volume changes, but also the rich ester and cyanide groups in it can effectively capture lithium polysulfide. Meanwhile, the conducting skeleton consisting of poly(3,4-ethylenedioxythiophene) both provides the additional charge conduction pathways and acts as the redox intermediates, significantly accelerating the kinetic process of lithium polysulfide conversion. Based on the synergistic effect of the above mechanisms, the use of the prepared binder on the sulfur carbon cathode significantly improves the rate performance and cycle stability of lithium sulfur batteries.
RESUMEN
Alloying multiple immiscible elements into a nanoparticle with single-phase solid solution structure (high-entropy-alloy nanoparticles, HEA-NPs) merits great potential. To date, various kinds of synthesis techniques of HEA-NPs are developed; however, a continuous-flow synthesis of freestanding HEA-NPs remains a challenge. Here a micron-droplet-confined strategy by flame spray pyrolysis (FSP) to achieve the continuous-flow synthesis of freestanding HEA-NPs, is proposed. The continuous precursor solution undergoes gas shearing and micro-explosion to form nano droplets which act as the micron-droplet-confined reactors. The ultrafast evolution (<5 ms) from droplets to <10 nm nanoparticles of binary to septenary alloys is achieved through thermodynamic and kinetic control (high temperature and ultrafast colling). Among them, the AuPtPdRuIr HEA-NPs exhibit excellent electrocatalytic performance for alkaline hydrogen evolution reaction with 23 mV overpotential to achieve 10 mA cm-2, which is twofold better than that of the commercial Pt/C. It is anticipated that the continuous-flow synthesis by FSP can introduce a new way for the continuous synthesis of freestanding HEA-NP with a high productivity rate.
RESUMEN
The Co-free Ni-rich layered cathodes become pivotal to reduce cost and increase benefit toward next-generation Li-ion batteries yet raise a major challenge for their extremely fragile cathode-electrolyte interface (CEI) film. Herein, we report the in situ construction of the Si/B-enriched organic-inorganic hybrid CEI films on LiNi0.9Mn0.1O2 (NM91) with the assistance of tris(trimethylsilyl) borate (TMSB) additive. The hybrid film exhibits superior Young's modulus, mechanical strength, and ductility, which greatly dissipate the microstrain of Co-free Ni-rich cathodes under various states of charge with high structural integrity. Furthermore, the surface oxygen anions have been significantly stabilized by bonding with the Si and B ions of TMSB with high safety. These merits enable a durable Co-free Ni-rich layered cathode with 96.9% and 87.7% capacity retentions (versus 72.7% and 70.2% of NM91) at a high rate of 5C and a high-temperature of 55 °C after 100 cycles. In a pouch-type full cell, 88.8% of initial capacity is still maintained after cycling at 1C for 500 times, greatly expediting the development and application of Co-free Ni-rich layered cathodes.
RESUMEN
Electrocatalytic hydrogenation of unsaturated aldehydes to unsaturated alcohols is a promising alternative to conventional thermal processes. Both the catalyst and electrolyte deeply impact the performance. Designing the electrode-electrolyte interface remains challenging due to its compositional and structural complexity. Here, we employ the electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) as a reaction model. The typical cationic surfactant, cetyltrimethylammonium bromide (CTAB), and its analogs are employed as electrolyte additives to tune the interfacial microenvironment, delivering high-efficiency hydrogenation of HMF and inhibition of the hydrogen evolution reaction (HER). The surfactants experience a conformational transformation from stochastic distribution to directional assembly under applied potential. This oriented arrangement hampers the transfer of water molecules to the interface and promotes the enrichment of reactants. In addition, near 100 % 2,5-bis(hydroxymethyl)furan (BHMF) selectivity is achieved, and the faradaic efficiency (FE) of the BHMF is improved from 61 % to 74 % at -100â mA cm-2. Notably, the microenvironmental modulation strategy applies to a range of electrocatalytic hydrogenation reactions involving aldehyde substrates. This work paves the way for engineering advanced electrode-electrolyte interfaces and boosting unsaturated alcohol electrosynthesis efficiency.
RESUMEN
The synthesis of high-entropy alloys (HEAs) with ultra-small particle sizes has long been a challenging task. The complex and time-consuming synthesis process hinders their practical application and widespread adoption. This study presents the novel synthesis of TiO2 nanoparticles loaded with a quinary high-entropy alloy through flame spray pyrolysis (FSP) for the first time. The extremely fast heating rate of flame combustion makes the precursor fast pyrolysis gasification, high temperature in the flame field promotes the metal vapor mixing uniformly, and the fast quenching process can reduce the particle aggregation sintering, the ultra-small particle size of HEA firmly attached to the TiO2 surface. The catalysts prepared via this gas-to-particle pathway exhibit excellent performance in CO2 hydrogenation, achieving a conversion rate of 62% at 450 °C, and maintaining their activity for over 220 h without significant particle agglomeration. This finding provides valuable insights for the future design of catalytically active materials with enhanced activity and long-term stability.
RESUMEN
Wearable sweat sensors have received considerable attention due to their great potential for noninvasive continuous monitoring of an individual's health status applications. However, the low secretion rate and fast evaporation of sweat pose challenges in collecting sweat from sedentary individuals for noninvasive analysis of body physiology. Here, we demonstrate wearable textiles for continuous monitoring of sweat at rest using the combination of a heating element and a microfluidic channel to increase localized skin sweat secretion rates and combat sweat evaporation, enabling accurate and stable monitoring of trace amounts of sweat. The Janus sensing yarns with a glucose sensing sensitivity of 36.57 mA cm-2 mM-1 are embroidered into the superhydrophobic heated textile to collect sweat directionally, resulting in improved sweat collection efficiency of up to 96 and 75% retention. The device also maintains a highly durable sensing performance, even in dynamic deformation, recycling, and washing. The microfluidic sensing textile can be further designed into a wireless sensing system that enables sedentary-compatible sweat analysis for the continuous, real-time monitoring of body glucose levels at rest.
Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Humanos , Sudor/química , Microfluídica , Glucosa/análisis , Monitoreo Fisiológico , Textiles , Técnicas Biosensibles/métodosRESUMEN
Electrocatalytic reactions taking place at the electrified electrode-electrolyte interface involve processes of proton-coupled electron transfer. Interfacial protons are delivered to the electrode surface via a H2O-dominated hydrogen-bond network. Less efforts are made to regulate the interfacial proton transfer from the perspective of interfacial hydrogen-bond network. Here, we present quaternary ammonium salt cationic surfactants as electrolyte additives for enhancing the H2O2 selectivity of the oxygen reduction reaction (ORR). Through in situ vibrational spectroscopy and molecular dynamics calculation, it is revealed that the surfactants are irreversibly adsorbed on the electrode surface in response to a given bias potential range, leading to the weakening of the interfacial hydrogen-bond network. This decreases interfacial proton transfer kinetics, particularly at high bias potentials, thus suppressing the 4-electron ORR pathway and achieving a highly selective 2-electron pathway toward H2O2. These results highlight the opportunity for steering H2O-involved electrochemical reactions via modulating the interfacial hydrogen-bond network.
RESUMEN
The important concept of confined synthesis is considered a promising strategy for the design and synthesis of definable nanostructured materials with controllable compositions and specific morphology, such as highly loaded single-atom catalysts capable of providing abundant active sites for photocatalytic reactions. In recent years, researchers have been working on developing new confined reaction systems and searching for new confined spaces. Here, we present for the first time the concept of a bubble liquid film as a novel confined space. The liquid film has a typical sandwich structure consisting of a water layer, sandwiched between the upper and lower surfactant layers, with the thickness of the intermediate water layer at the micro- and nanometer scales, which can serve as a good confinement. Based on the above understanding and combined with the photodeposition method, we successfully confined synthesized Ag/TiO2, Au/TiO2, and Pd/TiO2 photocatalysts in liquid film. By HAADF-STEM, it can be seen that the noble metal morphologies are all nanoclusters of about 1 nm and are highly uniformly dispersed on the TiO2 surface. Compared with photodeposition in solution, we believe that the surfactant molecular layer restricts a limited amount of precursor to the liquid film, avoiding the accumulation of noble metals and the formation of large particle size nanoparticles. The liquid film, meanwhile, restricts the migration path of noble metal precursors, allowing for thorough in situ photodeposition and enables the complete and uniform dispersion of noble metal precursors, greatly reducing the photodeposition time. The uniform loading of the three noble metals proved the universality of the method, and the catalysts showed high activity for photocatalytic CO2 reduction. The rates of reduction of CO2 to CO over the Ag/TiO2 photocatalytic reached 230 µmol g-1 h-1.This study provides a new idea for the expansion of the confined reaction system and a reference for the study of liquid film as the confined space.
RESUMEN
Single-atom catalysts (SACs) exhibit remarkable catalytic activity at each metal site. However, conventionally synthesized single-atom catalysts often possess low metal loading, thereby constraining their overall catalytic performance. Here, a flame spray pyrolysis (FSP) method for the synthesis of a single-atom catalyst with a high loading capacity of up to 1.4 wt.% in practice is reported. CeZrO2 acts as a carrier and provides a large number of anchoring sites, which promotes the high-density generation of Pd, and the strong interaction between the metal and the support avoids atom aggregation. Pd-CeZrO2 series catalysts have excellent CO oxidation performance. When 0.97 wt.% Pd is added, the catalytic activity is the highest, and the temperature can be reduced to 120 °C. This work presented here demonstrates that FSP, as an inherently scalable technique, allows for elevating the single-atom loading to achieve an increase in its catalytic performance. The method presented here more options for the preparation of SACs.