Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 332: 118354, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38762210

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Berberine (BBR) is the main active component from Coptidis rhizome, a well-known Chinese herbal medicine used for metabolic diseases, especially diabetes for thousands of years. BBR has been reported to cure various metabolic disorders, such as nonalcoholic fatty liver disease (NAFLD). However, the direct proteomic targets and underlying molecular mechanism of BBR against NAFLD remain less understood. AIM OF THE STUDY: To investigate the direct target and corresponding molecular mechanism of BBR on NAFLD is the aim of the current study. MATERIALS AND METHODS: High-fat diet (HFD)-fed mice and oleic acid (OA) stimulated HepG2 cells were utilized to verify the beneficial impacts of BBR on glycolipid metabolism profiles. The click chemistry in proteomics, DARTS, CETSA, SPR and fluorescence co-localization analysis were conducted to identify the targets of BBR for NAFLD. RNA-seq and shRNA/siRNA were used to investigate the downstream pathways of the target. RESULTS: BBR improved hepatic steatosis, ameliorated insulin resistance, and reduced TG levels in the NAFLD models. Importantly, Aldo-keto reductase 1B10 (AKR1B10) was first proved as the target of BBR for NAFLD. The gene expression of AKR1B10 increased significantly in the NAFLD patients' liver tissue. We further demonstrated that HFD and OA increased AKR1B10 expression in the C57BL/6 mice's liver and HepG2 cells, respectively, whereas BBR decreased the expression and activities of AKR1B10. Moreover, the knockdown of AKR1B10 by applying shRNA/siRNA profoundly impacted the beneficial effects on the pathogenesis of NAFLD by BBR. Meanwhile, the changes in various proteins (ACC1, CPT-1, GLUT2, etc.) are responsible for hepatic lipogenesis, fatty acid oxidation, glucose uptake, etc. by BBR were reversed by the knockdown of AKR1B10. Additionally, RNA-seq was used to identify the downstream pathway of AKR1B10 by examining the gene expression of liver tissues from HFD-fed mice. Our findings revealed that BBR markedly increased the protein levels of PPARα while downregulating the expression of PPARγ. However, various proteins of PPAR signaling pathways remained unaffected post the knockdown of AKR1B10. CONCLUSIONS: BBR alleviated NAFLD via mediating PPAR signaling pathways through targeting AKR1B10. This study proved that AKR1B10 is a novel target of BBR for NAFLD treatment and helps to find new targets for the treatment of NAFLD by using active natural compounds isolated from traditional herbal medicines as the probe.


Asunto(s)
Aldo-Ceto Reductasas , Berberina , Dieta Alta en Grasa , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Humanos , Berberina/farmacología , Berberina/uso terapéutico , Células Hep G2 , Masculino , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Aldo-Ceto Reductasas/metabolismo , Aldo-Ceto Reductasas/genética , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Glucosa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Resistencia a la Insulina
2.
Huan Jing Ke Xue ; 42(5): 2422-2431, 2021 May 08.
Artículo en Chino | MEDLINE | ID: mdl-33884813

RESUMEN

As carbon sources for the denitrification process, agricultural wastes have some problems, such as excess release of organic carbon; unclear release characteristics of nitrogen, phosphorus, and colorimetric substances; and unclear components, release mechanisms, and potential effects of the released dissolved organic matter (DOM) in the start-up period. To resolve those problems, rice straw, wheat straw, corn stalk, corncob, soybean stalk, and soybean hull were selected as denitrification carbon sources to investigate the release mechanisms and potential influences of the organic matter, secondary pollutants, and DOM. The results showed that the six agricultural wastes could be used as the denitrification carbon source. The carbon content in the wheat straw was the highest and the secondary pollution risk from the corncob was the lowest. For the six carbon sources, the second-order kinetic equation and Ritger-Peppas equation were followed during the 1-120 h carbon release process. The fitting results demonstrated that corncob was more suitable for use as the denitrification carbon source because of its moderate cm value and longer t1/2 value, and the release mechanisms of the six types of carbon sources were mainly controlled by the diffusion process. The NH4+-N, TN, and TP contents in the immersion water of the rice straw were higher than those of the five other agricultural wastes, and there was heavy chromaticity in the immersion water of the wheat straw and corn stalk. The amounts of nitrogen, phosphorus, and chromatic substances released from the corncob were the lowest. The leachates of the corncob and soybean hull had higher biodegradability and lower risks of secondary pollution than those of the other sources. The aromaticity and molecular weight of DOM increased as the reaction time increased, and the humification of DOM was low. Five components were identified by PARAFAC. The main component was protein-like matter, which was mainly composed of tyrosine-like and tryptophan-like substances. There was less humic acid-like matter in the immersion water. The component characteristics of DOM might have had an adverse effect on the subsequent water treatment process. These results could provide theoretical support for the impact on effluent water quality and risk assessment when the agricultural wastes are used as an additional denitrification carbon source at the start-up stage.

3.
Huan Jing Ke Xue ; 41(5): 2329-2338, 2020 May 08.
Artículo en Chino | MEDLINE | ID: mdl-32608851

RESUMEN

When low-concentration rural sewage is treated biologically, the effluent total nitrogen (TN) concentration often does not meet the discharge limit because of its low carbon-to-nitrogen ratio (C/N). To solve this problem, a laboratory-scale anoxic/oxic (A/O) biofilter packed with Arundo donax and activated carbon as the anoxic and aerobic column fillers (No. 2) was operated for treatment of simulated rural sewage and advanced nitrogen removal, while an ordinary gravel-packing A/O biofilter (No. 1) was set up as the control group. The results were as follows. When the influent chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and TN concentrations were (79.47±14.21), (34.49±2.08), and (34.73±3.87) mg·L-1, respectively, the No. 1 and No. 2 reactors achieved removal efficiencies of (88.00±7.00)% and (89.00±10.00)%, (90.00±2.00)% and (97.00±7.00)%, and (37±15)% and (68±7)%, respectively. The results revealed that using Arundo donax and activated carbon new fillers could significantly enhance NH4+-N and TN removal. High-throughput sequencing results indicated that the microorganisms involved in the nitrification process in the No. 1 reactor mainly belong to Proteobacteria, whereas those in the No. 2 reactor belong to Proteobacteria and Nitrospirae. In addition, the main denitrification bacterial phyla in the anoxic column of the No. 1 reactor were Chloroflexi, Proteobacteria, Bacteroidetes, and Planctomycetes, whereas those in the anoxic column of the No. 2 reactor were primarily Bacteroidetes, Proteobacteria, Firmicutes, and Patescibacteria. Quantitative real time polymerase chain reaction (qPCR) results showed that the microbial nitrification (amoA and Nitrospira 16S rDNA), denitrification (narG, nosZ, nirS, and nirK), and anaerobic ammonium oxidation functional genes (ANAMMOX) in the No. 2 reactor were significantly higher than those in the No. 1 reactor. All the genes, except for the narG and nosZ genes, had one to two orders of magnitude of improvement in the No. 2 reactor compared to those in the No. 1 reactor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA