Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38498524

RESUMEN

Climate is the most important environmental factor influencing yield during rice growth and development. To investigate the relationships between climate and yield under different crop rotation patterns and planting methods, three typical rotation patterns (vegetable-rice (V), rape-rice (R), and wheat-rice (W)) and two mechanical planting methods (mechanical transplanting (T1) and mechanical direct seeding (T2)) were established. The results showed that compared to the V rotation pattern, the average daily temperature (ADT) during the sowing to heading stage increased under both R and W rotation patterns, which significantly shortened the growth period. Thus, the effective accumulated temperature (EAT), photosynthetic capacity, effective panicle (EP), and spikelet per panicle (SP) under R and W rotation patterns significantly decreased, leading to reductions in grain yield (GY). VT2 had a higher ratio of productive tillers (RPT), relative chlorophyll content (SPAD), leaf area index (LAI), and net photosynthetic rate (Pn) than those of VT1, which significantly increased panicle dry matter accumulation (DMA), resulting in an increase in GY. Although RT2 and WT2 had a higher RPT than those of RT1 and WT1, the GY of RT1 and WT1 decreased due to the significant reductions in EAT and photosynthetic capacity. Principal component analysis (PCA) showed that the comprehensive score for different rotation patterns followed the order of V > R > T with VT2 ranking first. The structural equation model (SEM) showed that EAT and ADT were the most important climate factors affecting yield, with total effects of 0.520 and -0.446, respectively. In conclusion, mechanical direct seeding under vegetable-rice rotation pattern and mechanical transplanting under rape-rice or wheat-rice rotation pattern were the rice-planting methods that optimized the climate resources in southwest China.

2.
Front Plant Sci ; 15: 1335744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529059

RESUMEN

Reasonable nitrogen (N) and potassium (K) application rates can effectively improve fertilizer use efficiency, rice yield and quality. A two-year field experiment was conducted with combined application of three N rates (135, 180, and 225 kg ha-1, denoted as N1-N3) and four K rates (0, 90, 135, and 180 kg ha-1, denoted as K0-K3) using super indica hybrid rice cultivar Yixiangyou (YXY) 2115 to explore the effects of co-application of N and K on rice growth and development. The results indicated that the combined application of N and K had significantly interactive effects on dry matter (DM) accumulation, nutrients absorption, N harvest index (NHI), K harvest index (KHI), spikelets per panicle and most rice quality indexes. The highest total DM accumulation (17998.17-19432.47 kg ha-1) at maturity stage was obtained under N3K2. The effect of co-application of N and K on nutrients absorption and utilization varied between the two years and within each year. The highest total N and K accumulations at maturity stage were observed under N3K1 and N3K2, respectively, while the highest N recovery efficiency (NRE) and K recovery efficiency (KRE) were observed under N1K3. High expression levels of N and K metabolism-related genes in rice grains were observed under N3K2 or N3K3, consistent with N and K uptake. Co-application of N and K increased rice yield significantly and the highest yield (6745.02-7010.27 kg ha-1) was obtained under N2K2. As more N was gradually applied, rice appearance quality improved but milling, cooking and eating quality decreased. Although appropriate application of K could improve rice milling, cooking and eating quality, it reduced appearance quality. The optimal milling, cooking and eating quality were obtained under N1K2, while the best appearance quality was obtained under N3K0. Overall, a combination of 135-210 kg ha-1 N and 115-137 kg ha-1 K application rates was recommended for achieving relatively higher yield and better quality in rice production.

3.
Front Plant Sci ; 14: 1133524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180383

RESUMEN

Rice is a water intensive crop and soil water conditions affect rice yield and quality. However, there is limited research on the starch synthesis and accumulation of rice under different soil water conditions at different growth stages. Thus, a pot experiment was conducted to explore the effects of IR72 (indica) and Nanjing (NJ) 9108 (japonica) rice cultivars under flood-irrigated treatment (CK, 0 kPa), light water stress treatment (L, -20 ± 5 kPa), moderate water stress treatment (M, -40 ± 5 kPa) and severe water stress treatment (S, -60 ± 5 kPa) on the starch synthesis and accumulation and rice yield at booting stage (T1), flowering stage (T2) and filling stage (T3), respectively. Under LT treatment, the total soluble sugar and sucrose contents of both cultivars decreased while the amylose and total starch contents increased. Starch synthesis-related enzyme activities and their peak activities at mid-late growth stage increased as well. However, applying MT and ST treatments produced the opposite effects. The 1000-grain weight of both cultivars increased under LT treatment while the seed setting rate increased only under LT3 treatment. Compared with CK, water stress at booting stage decreased grain yield. The principal component analysis (PCA) showed that LT3 got the highest comprehensive score while ST1 got lowest for both cultivars. Furthermore, the comprehensive score of both cultivars under the same water stress treatment followed the trend of T3 > T2 > T1, and NJ 9108 had a better drought-resistant ability than IR72. Compared with CK, the grain yield under LT3 increased by 11.59% for IR72 and 16.01% for NJ 9108, respectively. Overall, these results suggested that light water stress at filling stage could be an effective method to enhance starch synthesis-related enzyme activities, promote starch synthesis and accumulation and increase grain yield.

4.
Front Plant Sci ; 13: 1023677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275585

RESUMEN

Giant embryo rice is known as a highly nutritious functional rice because it is rich in gamma-aminobutyric acid (GABA), which has various regulatory functions in the human body. To study the response of giant embryo rice yield and quality to nitrogen (N) application, and to verify the effect of giant embryo brown rice on alleviating hyperlipidemia in rats. In this study, field experiments were conducted in 2020 and 2021 using the giant embryo rice varietiers J20 (japonica) and Koshihikari (japonica) rice as experimental materials and five N levels, 0 (N0), 90 (N1), 135 (N2), 180 (N3) and 225 (N4) kg ha-1. The results showed that the yield of both varieties increased with increasing N and the maximum values were observed under the N2 treatment. As more N was gradually applied, the brown rice rate, milled rice rate, head rice rate and GABA content of both varieties first increased and then decreased, while the chalky grain rate and chalkiness showed the opposite trend. The optimal values of these indexes were observed under the N2 treatment. The peak viscosity and breakdown value of J20 decreased, while its setback value and pasting temperature increased with increasing N. In contrast, Koshihikari showed the opposite trend. The protein content and protein component contents of both varieties showed an increasing trend with increasing N, among which gliadin was the most sensitive protein component to N fertilizer. Animal experiments results showed that J20 brown rice could significantly slow the rate of weight gain of rats, reduce serum total cholesterol and triglyceride levels and increase high-density lipoprotein cholesterol levels. Therefore, increasing N could effectively enhance J20 yield and improve processing, appearance and nutritional quality but decrease cooking and eating quality. The brown rice J20 had the effect of slowing the rate of weight gain and reducing the hyperlipidemia level of rats, the optimal N application rate for achieving high yield, high quality and good functional characteristics in the giant embryo rice J20 was 135 kg ha-1. These findings will provide a theoretical and technical foundation for the popularization and application of giant embryo rice in the future.

5.
Mol Med Rep ; 15(2): 665-672, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28035416

RESUMEN

Pallidin is a protein found throughout the nervous system and it has been linked to the development of schizophrenia. At the same time, it has been suggested that schizophrenia is a neurodevelopmental disease. The p38 protein participates in neuronal differentiation and apoptosis. We hypothesized pallidin and p38 play a role in neural system development and the pathogenesis of schizophrenia, and designed several experiments to test this possibility. During pull-down experiments GST-pallidin was able to bind His-Ndn (an HDAC3 binding protein) in vitro. In cells co-transfected with HDAC3 and p38, the transcriptional activity of p38 was significantly inhibited by HDAC3. When pallidin was overexpressed, the transcriptional activity of the endogenous HDAC3 improved significantly. Overexpression of pallidin-EGFP in HCT116 p38 wild-type cells increased the endogenous p21 protein and the mRNA levels. The decrease in the expression of endogenous p38 affected the differentiation of N2a cells. The lengths of the neurites generated in the experimental group were significantly shorter than those in the control group. We conclude that pallidin indirectly regulates the transcriptional activity of p38 during neurodevelopment by binding HDAC3 and changing its cellular localization, which leaves p38 uninhibited. Moreover, since pallidin can also affect neuronal differentiation and its variants seem to be related to an increased risk of schizophrenia, it is possible that both pallidin and p38 play a role in the pathogenesis of the disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Lectinas/metabolismo , Esquizofrenia/patología , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Diferenciación Celular , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HCT116 , Células HEK293 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lectinas/antagonistas & inhibidores , Lectinas/genética , Ratones , Microscopía Fluorescente , Neuronas/citología , Neuronas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Esquizofrenia/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...