Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3185, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609368

RESUMEN

Conventional liquid-phase methods lack precise control in synthesizing and processing materials with macroscopic sizes and atomic thicknesses. Water interfaces are ubiquitous and unique in catalyzing many chemical reactions. However, investigations on two-dimensional (2D) materials related to water interfaces remain limited. Here we report the growth of millimeter-sized 2D PbI2 single crystals at the water-air interface. The growth mechanism is based on an inherent ion-specific preference, i.e. iodine and lead ions tend to remain at the water-air interface and in bulk water, respectively. The spontaneous accumulation and in-plane arrangement within the 2D crystal of iodide ions at the water-air interface leads to the unique crystallization of PbI2 as well as other metal iodides. In particular, PbI2 crystals can be customized to specific thicknesses and further transformed into millimeter-sized mono- to few-layer perovskites. Additionally, we have developed water-based techniques, including water-soaking, spin-coating, water-etching, and water-flow-assisted transfer to recycle, thin, pattern, and position PbI2, and subsequently, perovskites. Our water-interface mediated synthesis and processing methods represents a significant advancement in achieving simple, cost-effective, and energy-efficient production of functional materials and their integrated devices.

2.
J Am Chem Soc ; 146(11): 7831-7838, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38445480

RESUMEN

Low-dimensional lead halide perovskites with broadband emission hold great promise for single-component white-light-emitting (WLE) devices. The origin of their broadband emission has been commonly attributed to self-trapped excitons (STEs) composed of localized electronic polarization with a distorted lattice. Unfortunately, the exact electronic and structural nature of the STE species in these WLE materials remains elusive, hindering the rational design of high-efficiency WLE materials. In this study, by combining ultrafast transient absorption spectroscopy and ab initio calculations, we uncover surprisingly similar STE features in two prototypical low dimensional WLE perovskite single crystals: 1D (DMEDA)PbBr4 and 2D (EDBE)PbBr4, despite of their different dimensionalities. Photoexcited excitons rapidly localize to intrinsic STEs within ∼250 fs, contributing to the white light emission. Crucially, STEs in both systems exhibit characteristic absorption features akin to those of Pb+ and Pb3+. Further atomic level theoretical simulations confirm photoexcited electrons and holes are localized on the Pb2+ site to form Pb+- and Pb3+-like species, resembling transient photoinduced Pb2+ disproportionation. This study provides conclusive evidence on the key excited state species for exciton self-trapping and broadband emission in low dimensional lead halide WLE perovskites and paves the way for the rational design of high-efficiency WLE materials.

3.
Angew Chem Int Ed Engl ; 62(19): e202218546, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36853171

RESUMEN

The liquid-air interface offers a platform for the in-plane growth of free-standing materials. However, it is rarely used for inorganic perovskites and ultrathin non-layered perovskites. Herein the liquid-air interfacial synthesis of inorganic perovskite nanosheets (Cs3 Bi2 I9 , Cs3 Sb2 I9 ) is achieved simply by drop-casting the precursor solution with only the addition of iodine. The products are inaccessible without iodine addition. The thickness and lateral size of these nanosheets can be adjusted through the iodine concentration. The high volatility of the iodine spontaneously drives precursors that normally stay in the liquid to the liquid-air interface. The iodine also repairs in situ iodine vacancies during perovskite growth, giving enhanced optical and optoelectronic properties. The liquid-air interfacial growth of ultrathin perovskites provides multi-degree-of-freedom for constructing perovskite-based heterostructures and devices at atomic scale.

4.
Nano Lett ; 22(10): 3961-3968, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35507685

RESUMEN

Circularly polarized light (CPL) is essential for optoelectronic and chiro-spintronic applications. Hybrid perovskites, as star optoelectronic materials, have demonstrated CPL activity, which is, however, mostly limited to chiral perovskites. Here, we develop a simple, general, and efficient strategy to stimulate CPL activity in achiral perovskites, which possess rich species, efficient luminescence, and tunable bandgaps. With the formation of van der Waals heterojunctions between chiral and achiral perovskites, a nonequilibrium spin population and thus CPL activity are realized in achiral perovskites by receiving spin-polarized electrons from chiral perovskites. The polarization degree of room-temperature CPL in achiral perovskites is at least one order of magnitude higher than in chiral ones. The CPL polarization degree and emission wavelengths of achiral perovskites can be flexibly designed by tuning chemical compositions, operating temperature, or excitation wavelengths. We anticipate that unlimited types of achiral perovskites can be endowed with CPL activity, benefiting their applications in integrated CPL sources and detectors.

5.
Sci Total Environ ; 668: 1030-1037, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31018445

RESUMEN

Due to the quality difference between reclaimed water and natural groundwater, managed aquifer recharge (MAR) with reclaimed water may pose environmental risks. A river infiltration of reclaimed water for groundwater recharge in north China has been in operation for over 10 years. To investigate the actual impact on native groundwater under long-term MAR, 10-year monitoring data of recharge water and groundwater were analyzed. Due to the effect of recharge, the hydrochemical type of groundwater rapidly changed from Ca-Mg-HCO3 into Na-HCO3 which was the type of recharge water. Cl- was used as a conservative tracer in a physical mixing model, and the mixing was concluded to be dominant in the groundwater hydrochemical change under long-term MAR. The hydraulic travel time to the 30 m depth was determined to be about 6.5 months by obtaining the best-fit linear cross correlation between the concentrations of Cl- in recharge water and those in groundwater. In application of this method, the monitoring wells should be located downstream and as close as possible to the recharge site (e.g., <50 m). Based on the travel time, behaviors of total nitrogen (TN), NO3-N, NO2-N, and NH4-N were determined by attenuation factor (Af). As the main nitrogen compound, NO3-N was well attenuated under high hydraulic load, resulting in the Af > 1, with an attenuation rate of 99.6%. The Af < 1 of NH4-N indicated the additional input of NH4-N in groundwater. Fluctuations of NH4-N in recharge water exceeded 4 mg/L changes sorption equilibrium, resulting in the sorption/desorption of NH4-N in soil-groundwater system. The concentration of NH4-N in groundwater increased in the later period of monitoring. The overall attenuation rate of NH4-N was 26.3%. These findings contributed to improving the environmental benefits of this MAR site and provided guidance for other similar projects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA