Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Vet Microbiol ; 290: 110010, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38306768

RESUMEN

To investigate the critical role of the S gene in determining pathogenesis of TW-like avian infectious bronchitis virus (IBV), we generated two recombinant IBVs (rGDaGD-S1 and rGDaGD-S2) by replacing either the S1 or S2 region of GD strain with the corresponding regions from an attenuated vaccine candidate aGD strain. The virulence and pathogenicity of these recombinant viruses was assessed both in vitro and in vivo. Our results indicated the mutations in the S2 region led to decreased virulence, as evidenced by reduced virus replication in embryonated chicken eggs and chicken embryonic kidney cells as well as observed clinical symptoms, gross lesions, microscopic lesions, tracheal ciliary activity, and viral distribution in SPF chickens challenged with recombinant IBVs. These findings highlight that the S2 subunit is a key determinant of TW-like IBV pathogenicity. Our study established a foundation for future investigations into the molecular mechanisms underlying IBV virulence.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Vacunas Virales , Embrión de Pollo , Animales , Pollos , Infecciones por Coronavirus/veterinaria , Glicoproteína de la Espiga del Coronavirus/genética , Oligopéptidos
2.
Pestic Biochem Physiol ; 195: 105578, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666583

RESUMEN

Essential oils (EOs) and their volatile secondary metabolites have been proved to be effective on storage pests control, while restricted on the application due to unclear mechanism. Molecular dynamics (MD) simulations and binding free energies analysis provided an effective approach to reveal mechanism on conformational calculation. In this work, the insecticidal and repellent capacities of Praxelis clematidea and Ageratum houstonianum oils and their main components identified by gas chromatography-mass spectrometry (GC-MS) were scientifically measured. Interestingly, P. clematidea oil exhibited strong fumigant toxicity against Tribolium castaneum (LC50 = 7.07 mg/L air). Moreover, two EOs exhibited over 80% repellent rate against T. castaneum at the highest concentration of 78.63 nL/cm2. Furthermore, hundreds of enzymes related to the regulation of biological processes of T. castaneum were screened to explore the underlying molecular mechanism and develop promising insecticides. Besides, top hits were subjected to MD simulations and binding free energies analysis to elucidate complex inter-molecular stability and affinity over simulated time. The results demonstrated that isolongifolene, δ-cadinene, ß-caryophyllene and caryophyllene oxide were prioritized as they were establishing conserved and stable interactions with residues of nuclear hormone receptor 3 (TcHR3) of T. castaneum, which suggested that the four sesquiterpenes have potential to be promising insecticides on storage pests control.


Asunto(s)
Asteraceae , Repelentes de Insectos , Insecticidas , Sesquiterpenos , Tribolium , Animales , Insecticidas/farmacología , Sesquiterpenos/farmacología , Cromatografía de Gases y Espectrometría de Masas
3.
Sci Total Environ ; 904: 166885, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678520

RESUMEN

The risks of Zinc oxide nanoparticles (ZnO NPs) applications in biological medicine, food processing industry, agricultural production and the biotoxicity brought by environmental invasion of ZnO NPs both gradually troubled the public due to the lack of research on detoxification strategies. TFEB-regulated autophagy-pyroptosis pathways were found as the crux of the hepatotoxicity induced by ZnO NPs in our latest study. Here, our study served as a connecting link between preceding toxic target and the following protection mechanism of Paeoniflorin (PF). According to a combined analysis of network pharmacology/molecular docking-intestinal microbiota-metabolomics first developed in our study, PF alleviated the hepatotoxicity of ZnO NPs from multiple aspects. The hepatic inflammatory injury and hepatocyte pyroptosis in mice liver exposed to ZnO NPs was significantly inhibited by PF. And the intestinal microbiota disorder and liver metabolic disturbance were rescued. The targets predicted by bioinformatics and the signal trend in subacute toxicological model exhibited the protectiveness of PF related to the SIRT1-mTOR-TFEB pathway. These evidences clarified multiple protective mechanisms of PF which provided a novel detoxification approach against ZnO NPs, and further provided a strategy for the medicinal value development of PF.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Nanopartículas , Óxido de Zinc , Ratones , Animales , Óxido de Zinc/toxicidad , Piroptosis , Simulación del Acoplamiento Molecular , Nanopartículas/toxicidad
4.
Analyst ; 148(7): 1603-1610, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36912125

RESUMEN

Aconitum L. poisoning is a major type of poisoning caused by herbal medicines in many countries. However, despite its toxicity, Aconitum L. is still used because of its therapeutic value. Fuzi, the lateral root of Aconitum L., is one of the most important pharmacological parts. It is necessary for rational medication to figure out the types and contents of toxic Aconitum alkaloids (AAs) in Fuzi and its processed products. The present study aims to investigate the spatial distribution of toxic AAs in Fuzi and the quantification of AAs in various processing products through mass spectrometry methods. In this study, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was used to directly image the sections of raw Fuzi. The results showed a high content of diester alkaloids (DAs) and a relatively uniform distribution in the sections, while the content of monoester alkaloids (MAs) was low and uneven in the sections, distributed in the cortex, epidermis, vascular column, and other parts of the tissues. The content of non-ester alkaloids (NAs) was relatively minimum, and most of the NAs were distributed in the vascular column and the tightly connected cortex of the tissue. To further investigate the difference between raw and processed Fuzi, 60 known compounds were identified using UHPLC-QTOF-MS. The total contents of alkaloids in 7 processed Fuzi were lower than that in Shengfupian (SFP). Paofupian (PFP), Paotianxiong (PTX), Paofupian (PFP*), Danfupian (DFP), and Shufupian (SFP*) were the least similar. Zhengfupian (ZFP) and Chaofupian (CFP) had significantly reduced toxicity and increased efficacy compared with other processed products because the contents of active alkaloids in other processed products were also reduced. Understanding the distribution of metabolites and the composition changes after processing can guide users and herbal manufacturers to carefully choose the relatively safe and better therapeutic species of Fuzi. The information gathered from this study can contribute towards the improved and effective management of therapeutically important, nonetheless toxic, drugs such as Aconitum L.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Aconitum/química , Cromatografía Líquida de Alta Presión/métodos , Alcaloides/análisis , Alcaloides/química , Alcaloides/farmacología , Medicamentos Herbarios Chinos/análisis , Raíces de Plantas
5.
Sci Total Environ ; 865: 161242, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36587696

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) have drawn serious concerns about their biotoxicity due to their extensive applications in biological medicine, clinical therapeutic, daily chemical production, food and agricultural additives. In our present study, we clarified hepatotoxic mechanism of ZnO NPs through investigating the crosstalk between autophagy and pyroptosis, a remaining enigma in hepatocyte stimulated by ZnO NPs. Based on the effects of autophagy intervention by Rapamycin (Rap) and 3-Methyladenine (3-MA), and the observation of pyroptosis morphology and related indexes, the autophagy and pyroptosis simultaneously initiated by ZnO NPs were interrelated and the autophagy characterized by autophagosome production and increased expression of autophagy proteins was identified as a protective response of ZnO NPs against pyroptosis. According to the analysis of protein expression and fluorescence localization, the NLRP3 inflammasome assemble and the classical Caspase-1/GSDMD-dependent pyroptosis induced by ZnO NPs was modulated by autophagy. In this process, the adjustment of TFEB expression and nuclear translocation by gene knockout and gene overexpression, further altered the tendency of ZnO NPs-induced pyroptosis via the regulation of autophagy and lysosomal biogenesis. The knockout of TFEB gene exacerbated the pyroptosis via autophagy elimination and lysosome inhibition. While the alleviation of NLRP3 generation and pyroptosis activation was observed after treatment of TFEB gene overexpression. Additionally, the siRNA interference confirmed that TRAF-6 was involved in the TFEB-mediated global regulation of autophagy-lysosome-pyroptosis in response to ZnO NPs. Accordingly, pyroptosis induced by ZnO NPs in hepatocyte could be significantly avoided by TFEB-regulated autophagy and lysosome, further providing new insights for the risk assessment and therapeutic strategy.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Óxido de Zinc , Humanos , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/farmacología , Lisosomas , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Óxido de Zinc/química , Nanopartículas del Metal
6.
J Hazard Mater ; 442: 130039, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36166902

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) have been widely used in the fields of daily necessities, clinical diagnosis, drug delivery and agricultural production. The improper use of ZnO NPs could pose a risk to ecological environment and public health. Liver has been known as a critical toxic target of ZnO NPs. However, the question whether ZnO NPs lead to hepatocyte death through pyroptosis has not been answered yet, and the effect of oxidative stress on ZnO NPs-induced pyroptosis remains a mystery. We revealed that ZnO NPs disrupted zinc homeostasis and induced oxidative stress impairment in rat liver. Meanwhile, ZnO NPs triggered the assembly of NLRP3-ASC-Caspase-1 inflammatory complex and pyroptosis in both rat liver and HepG2 cells, further causing the activation of GSDMD, promoting the leakage of inflammatory cytokines including IL-1ß and IL-18. Importantly, the inhibition of oxidative stress was found to provide protection against pyroptosis in hepatocyte exposed to ZnO NPs. We identified a novel mechanism of liver damage induced by ZnO NPs, demonstrating the activation of canonical Caspase-1-dependent pyroptosis pathway and clarifying the protection of antioxidation against pyroptosis damage. Our discovery provided a support for risk assessment of ZnO NPs and target exploration for clinical treatment related to pyroptosis.


Asunto(s)
Nanopartículas , Óxido de Zinc , Ratas , Animales , Óxido de Zinc/toxicidad , Interleucina-18/metabolismo , Interleucina-18/farmacología , Piroptosis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nanopartículas/toxicidad , Estrés Oxidativo , Caspasas/metabolismo , Caspasas/farmacología , Hígado/metabolismo , Zinc/metabolismo
7.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743165

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) with high bioavailability and excellent physicochemical properties are gradually becoming commonplace as a substitute for conventional ZnO materials. The present study aimed to investigate the hepatotoxicity mechanism of ZnO NPs and traditional non-nano ZnO particles, both in vivo and in vitro, and identify the differences in their toxic effects. The results showed that the extent and conditions of zinc ion release from ZnO NPs were inconsistent with those of ZnO. The RNA-seq results revealed that the expression quantity of differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) affected by ZnO NPs was more than in ZnO, and the overall differences in genes or transcripts in the ZnO NPs group were more pronounced than in the ZnO group. Furthermore, the cell inactivation, oxidative stress, mitochondrial damage, and intracellular calcium overload induced by ZnO NPs were more serious than ZnO in HepG2 cells. Moreover, compared with traditional ZnO, the rat liver damage induced by ZnO NPs was more significant, with evidence of higher AST and ALT levels, weaker antioxidant capacity, and more serious histopathological damage (p < 0.05). In summary, the hepatotoxicity of ZnO NPs was more serious than that of conventional ZnO, which is helpful to understand the hepatotoxicity mechanism of Zn compounds in different states and improve the risk assessment of novel nano ZnO products in a variety of applications.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Nanopartículas , Óxido de Zinc , Animales , Calcio/metabolismo , Calcio de la Dieta/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Nanopartículas/química , Estrés Oxidativo , Ratas , Óxido de Zinc/toxicidad
8.
Oxid Med Cell Longev ; 2021: 9967334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621467

RESUMEN

Mycotoxins are key risk factors in human food and animal feed. Most of food-origin mycotoxins could easily enter the organism and evoke systemic toxic effects, such as aflatoxin B1 (AFB1), ochratoxin A (OTA), T-2 toxin, deoxynivalenol (DON), zearalenone (ZEN), fumonisin B1 (FB1), and 3-nitropropionic acid (3-NPA). For the last decade, the researches have provided much evidences in vivo and in vitro that the brain is an important target organ on mycotoxin-mediated neurotoxic phenomenon and neurodegenerative diseases. As is known to all, glial cells are the best regulator and defender of neurons, and a few evaluations about the effects of mycotoxins on glial cells such as astrocytes or microglia have been conducted. The fact that mycotoxin contamination may be a key factor in neurotoxicity and glial dysfunction is exactly the reason why we reviewed the activation, oxidative stress, and mitochondrial function changes of glial cells under mycotoxin infection and summarized the mycotoxin-mediated glial cell proliferation disorders, death pathways, and inflammatory responses. The purpose of this paper is to analyze various pathways in which common food-derived mycotoxins can induce glial toxicity and provide a novel perspective for future research on the neurodegenerative diseases.


Asunto(s)
Alimentación Animal/microbiología , Astrocitos/efectos de los fármacos , Microglía/efectos de los fármacos , Micotoxinas/toxicidad , Enfermedades Neurodegenerativas/inducido químicamente , Síndromes de Neurotoxicidad/etiología , Alimentación Animal/análisis , Animales , Astrocitos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Microglía/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Estrés Oxidativo/efectos de los fármacos
9.
Food Chem Toxicol ; 151: 112134, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33762183

RESUMEN

T-2 toxin, a food-derived mycotoxin, has been identified as a neurotoxin. Nonetheless, T-2 toxin-induced neuroinflammation has never been revealed. As an important therapeutic target for inflammatory diseases and cancers, the role of high mobility group B1 (HMGB1) in mycotoxin-mediated neurotoxicity remains a mystery. In current study, we found that PC12 cells were sensitive to trace amounts of T-2 toxin less than 12 ng/mL, distinguished by decreased cell viability and increased release of lactate dehydrogenase (LDH). Oxidative stress and mitochondrial damage were observed in PC12 cells, manifested as accumulation of oxidative stress products, up-regulation of Nrf2/HO-1 pathway and decrease of mitochondrial membrane potential (MMP), leading to mitochondria-dependent apoptosis. Meanwhile, we first discovered that tiny amounts of T-2 toxin triggered neuroinflammation directly, including raising the expression and translocation of NF-κB and promoting secretion of proinflammatory cytokines such as TNF-α, IL-6, IL-8 and IL-1ß. Most interestingly, the increased of HMGB1 was detected both inside and outside the cells. Conversely, HMGB1 siRNA reduced T-2 toxin-mediated oxidative stress, apoptosis and neuroinflammatory outbreak, accompanied by lessened caspase-3 and caspase-9, and decreased secretion of pro-inflammatory cytokines. Taken together, T-2 toxin-stimulated PC12 cells simultaneously displayed apoptosis and inflammation, whereas HMGB1 played a critical role in these neurotoxic processes.


Asunto(s)
Proteína HMGB1/efectos de los fármacos , Sistema Nervioso/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Toxina T-2/toxicidad , Animales , Relación Dosis-Respuesta a Droga , FN-kappa B/metabolismo , Células PC12 , Ratas , Especies Reactivas de Oxígeno/metabolismo
10.
Neurochem Res ; 46(2): 367-378, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33201401

RESUMEN

Impaired homeostasis of copper has been linked to different pathophysiological mechanisms in neurodegenerative diseases and oxidative injury has been proposed as the main mechanism. This study aims to use curcumin, a widely used antioxidative and anti-apoptotic agent, to exert the neuroprotective effect against copper in vitro and illuminate the underlying mechanism. The effect of curcumin was examined by using a cell counting kit-8 assay, flow cytometry, immunofluorescence, spectrophotometer, and western blot. Results revealed that after pretreatment with curcumin for 3 h, copper-induced toxicity and apoptosis show a significant decline. Further experiments showed that curcumin not only decreased the production of ROS and MDA but also increased the activities of the ROS scavenging enzymes SOD and CAT. Moreover, curcumin treatment alleviated the decrease in mitochondrial membrane potential and the nuclear translocation of cytochrome c induced by copper. The protein levels of pro-caspase 3, pro-caspase 9, and PARP1 were up-regulated and the Bax/Bcl-2 ratio was down-regulated in the presence of curcumin. Taken together, our study demonstrates that curcumin has neuroprotective properties against copper in SH-SY5Y cells and the potential mechanisms might be related to oxidative stress and mitochondrial apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Curcumina/uso terapéutico , Intoxicación del Sistema Nervioso por Metales Pesados/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/uso terapéutico , Línea Celular Tumoral , Cobre , Citocromos c/metabolismo , Humanos
11.
Oxid Med Cell Longev ; 2020: 8835207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381272

RESUMEN

Olaquindox (OLA), a member of the quinoxaline-N,N-dioxide family, has been widely used as a growth-promoting feed additive and treatment for bacterial infections. The toxicity has been a major concern, and the precise molecular mechanism remains poorly understood. The present study was aimed at investigating the roles of oxidative stress and p53 in OLA-caused liver damage. In a mouse model, OLA administration could markedly cause liver injury as well as the induction of oxidative stress and activation of p53. Antioxidant N-acetylcysteine (NAC) inhibited OLA-induced oxidative stress and p53 activation in vivo. Furthermore, knockout of the p53 gene could significantly inhibit OLA-induced liver damage by inhibiting oxidative stress and the mitochondria apoptotic pathway, compared to the p53 wild-type liver tissue. The cell model in vitro further demonstrated that p53 knockout or knockdown in the HCT116 cell and L02 cell significantly inhibited cell apoptosis and increased cell viability, presented by suppressing ROS production, oxidative stress, and the Nrf2/HO-1 pathway. Moreover, loss of p53 decreased OLA-induced mitochondrial dysfunction and caspase activations, with the evidence of inhibited activation of phosphorylation- (p-) p38 and p-JNK and upregulated cell autophagy via activation of the LC3 and Beclin1 pathway in HCT116 and L02 cells. Taken together, our findings provided a support that p53 primarily played a proapoptotic role in OLA-induced liver damage against oxidative stress and mitochondrial dysfunction, which were largely dependent on suppression of the JNK/p38 pathway and upregulation of the autophagy pathway via activation of LC3 and Beclin1.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Estrés Oxidativo/efectos de los fármacos , Quinoxalinas/toxicidad , Proteína p53 Supresora de Tumor/fisiología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Células HCT116 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética
12.
Food Chem Toxicol ; 145: 111727, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32898599

RESUMEN

Olaquindox (OLA) is a chemosynthetic growth promoter, which could promote the treatment of bacterial infections and improve feed energy efficiency. Hepatotoxicity is still a poor feature associated with the adverse effects of OLA. The present study aimed to investigate the molecular mechanism of OLA-induced hepatotoxicity and the protective role of curcumin in mice and HepG2 cells. The result showed that representative biomarkers involved in mitochondrial pathway, p53 pathway, mitogen-activated protein kinase (MAPK) pathway, autophagy and antioxidant pathway were activated. Furthermore, curcumin attenuated OLA-induced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and liver damage in mice. In addition, cell viability of HepG2 was enhanced by curcumin pretreatment at 5, 10 and 20 µM. Meanwhile, curcumin markedly ameliorated OLA-induced oxidative stress, apoptosis and mitochondrial dysfunction. Moreover, curcumin pretreatment significantly up-regulated the expressions of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1(HO-1) and down-regulated the expressions of nuclear factor-kappaB (NF-kB) and p53 through reduced the nuclear translocation of NF-kB induced by OLA. In summary, our findings indicated that OLA-induced hepatotoxicity involved in mitochondrial apoptosis, autophagy, p53 pathway, Nrf2/HO-1 pathways, and curcumin regulated OLA-induced liver damage, oxidative stress and apoptosis via activation of Nrf2/HO-1 pathway and suppression of p53 and NF-kB pathway.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Curcumina/administración & dosificación , Sustancias Protectoras/administración & dosificación , Quinoxalinas/toxicidad , Animales , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos
13.
Biomolecules ; 10(7)2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650488

RESUMEN

The precise pathogenic mechanism in Cu exposure-cause nephrotoxicity remains unclear. This study investigated the underlying molecular mechanism of copper sulfate (CuSO4)-induced nephrotoxicity. Mice were treated with CuSO4 at 50, 100, 200 mg/kg/day or co-treated with CuSO4 (200 mg/kg/day) and 4-phenylbutyric acid (4-PBA, 100 mg/kg/day) for 28 consecutive days. HEK293 cells were treated with CuSO4 (400 µM) with or without superoxide dismutase, catalase or 4-PBA for 24 h. Results showed that CuSO4 exposure can cause renal dysfunction and tubular necrosis in the kidney tissues of mice. CuSO4 exposure up-regulated the activities and mRNA expression of caspases-9 and -3 as well as the expression of glucose-regulated protein 78 (GRP78), GRP94, DNA damage-inducible gene 153 (GADD153/CHOP), caspase-12 mRNAs in the kidney tissues. Furthermore, superoxide dismutase and catalase pre-treatments partly inhibited CuSO4-induced cytotoxicity by decreasing reactive oxygen species (ROS) production, activities of caspases-9 and -3 and DNA fragmentations in HEK293 cells. 4-PBA co-treatment significantly improved CuSO4-induced cytotoxicity in HEK293 cells and inhibited CuSO4 exposure-induced renal dysfunction and pathology damage in the kidney tissues. In conclusion, our results reveal that oxidative stress and endoplasmic reticulum stress contribute to CuSO4-induced nephrotoxicity. Our study highlights that targeting endoplasmic reticulum and oxidative stress may offer an approach for Cu overload-caused nephrotoxicity.


Asunto(s)
Sulfato de Cobre/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Enfermedades Renales/genética , Estrés Oxidativo/efectos de los fármacos , Fenilbutiratos/administración & dosificación , Animales , Caspasa 12/genética , Caspasa 3/genética , Caspasa 9/genética , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Proteínas de Choque Térmico/genética , Humanos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Ratones , Fenilbutiratos/farmacología , Pruebas de Toxicidad , Factor de Transcripción CHOP/genética
14.
Front Vet Sci ; 7: 610627, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33426030

RESUMEN

Plant soot, as a novel feed additive, could not only improve digestive function but also adsorb mycotoxins and inhibit bacterial infections. The subchronic toxicity and prenatal developmental effects of plant soot were studied for the first time. Our results indicated that there was no subchronic toxicity in the range of 2,000-50,000 mg/kg plant soot added in the feed, and there was no significant difference in reproductive function, embryo development, and teratogenicity between the pregnant rats exposed to 312.5, 1,250, and 5,000 mg/kg plant soot and the control group. The maximum no-observed effect level (NOEL) of supplemental dosage in feed could be set to 50,000 mg/kg, and the maximum intragastric NOEL could be set to 5,000 mg/kg, which preliminarily provided guidance on daily additive amount or clinical protocols for plant soot, as well as promoting the development and application of this harmless antibiotic substitutes.

15.
Cell Death Dis ; 9(12): 1164, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30478280

RESUMEN

This is the first study to investigate the hepatoprotective effect of CQ on acute liver injury caused by carbon tetrachloride (CCl4) in a murine model and the underlying molecular mechanisms. Ninety-six mice were randomly divided into the control (n = 8), CQ (n = 8), CCl4 (n = 40), and CCl4 + CQ (n = 40) treatment groups. In the CCl4 group, mice were intraperitoneally (i.p) injected with 0.3% CCl4 (10 mL/kg, dissolved in olive oil); in the CCl4 + CQ group, mice were i.p injected with CQ at 50 mg/kg at 2, 24, and 48 h before CCl4 administration. The mice in the control and CQ groups were administered with an equal vehicle or CQ (50 mg/kg). Mice were killed at 2, 6, 12, 24, 48 h post CCl4 treatment and their livers were harvested for analysis. The results showed that CQ pre-treatment markedly inhibited CCl4-induced acute liver injury, which was evidenced by decreased serum transaminase, aspartate transaminase and lower histological scores of liver injury. CQ pretreatment downregulated the CCl4-induced hepatic tissue expression of high-mobility group box 1 (HMGB1) and the levels of serum HMGB1 as well as IL-6 and TNF-α. Furthermore, CQ pre-treatment inhibited autophagy, downregulated NF-kB expression, upregulated p53 expression, increased the ratio of Bax/Bcl-2, and increased the activation of caspase-3 in hepatic tissue. This is the first study to demonstrate that CQ ameliorates CCl4-induced acute liver injury via the inhibition of HMGB1-mediated inflammatory responses and the stimulation of pro-apoptotic pathways to modulate the apoptotic and inflammatory responses associated with progress of liver damage.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Cloroquina/farmacología , Inflamación/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Tetracloruro de Carbono/toxicidad , Caspasa 3/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Regulación de la Expresión Génica/efectos de los fármacos , Proteína HMGB1/genética , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Hígado/efectos de los fármacos , Hígado/lesiones , Ratones , FN-kappa B/genética , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética
16.
Mol Neurobiol ; 55(1): 421-434, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27957686

RESUMEN

Neurotoxicity is an unwanted side-effect seen in patients receiving therapy with the "last-line" polymyxin antibiotics. This is the first study to show that colistin-induced neurotoxicity in neuroblastoma-2a (N2a) cells gives rise to an inflammatory response involving the IL-1ß/p-IκB-α/NF-κB pathway. Pretreatment with curcumin at 5, 10, and 20 µM for 2 h prior to colistin (200 µM) exposure for 24 h, produced an anti-inflammatory effect by significantly down-regulating the expression of the pro-inflammatory mediators cyclooxygenase-2 (COX-2), phosphorylation of the inhibitor of nuclear factor-kappa B (NF-κB) (p-IκB)-α, and concomitantly NF-κB levels. Moreover, curcumin significantly decreased intracellular reactive oxygen species (ROS) production and increased the activities of the anti-ROS enzymes superoxide dismutase, catalase, and the intracellular levels of glutathione. Curcumin pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation, and subsequent apoptosis. Overall, our findings demonstrate for the first time, a potential role for curcumin for treating polymyxin-induced neurotoxicity through the modulation of NF-κB signaling and its potent anti-oxidative and anti-apoptotic effects.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Colistina/toxicidad , Curcumina/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Colistina/antagonistas & inhibidores , Ratones , Estrés Oxidativo/fisiología
17.
J Cell Physiol ; 233(6): 5070-5077, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29231977

RESUMEN

Bcl-2 homologous antagonist/killer (BAK1) is a critical regulator of mitochondrial apoptosis. Although upregulation of BAK1 induces apoptosis has been established, the underlying molecular mechanism is far from clear. 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an organic anion used as a blocker of anion exchangers and chloride channels, has been proved to rescue cell apoptosis both in vitro and in vivo. However, whether DIDS can inhibit BAK1-induced mitochondrial apoptosis remains undefined. Thus, this study aimed to explore whether DIDS could protect BAK1-induced apoptosis through GSK3ß/ß-catenin signaling pathway. The results showed overexpression BAK1 in 293T cells induced mitochondrial apoptosis accompanied by increasing the expression levels of cleaved caspase-9, -3, poly (ADP-ribose) polymerase (PARP) and reducing the MMP. Furthermore, overexpression BAK1 decreased the expression levels of Ser9-GSK3ß and ß-catenin. In addition, lithium chloride (LiCl), an activator of Wnt/ß-catenin signaling pathway, markedly attenuated overexpression BAK1-induced mitochondrial apoptosis by restoring the expression levels of Ser9-GSK3ß and ß-catenin. Finally, DIDS absolutely abolished overexpression BAK1-mediated mitochondrial apoptosis through recovering the expression levels of Ser9-GSK3ß and ß-catenin. Taken together, our results reveal that DIDS blocks overexpression BAK1-induced mitochondrial apoptosis through GSK3ß/ß-catenin pathway.


Asunto(s)
Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Apoptosis/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mitocondrias/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Células HEK293 , Humanos , Mitocondrias/enzimología , Mitocondrias/patología , Fosforilación , Regulación hacia Arriba , Proteína Destructora del Antagonista Homólogo bcl-2/genética
18.
Toxicol In Vitro ; 47: 195-206, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29229420

RESUMEN

Quinocetone (QCT) has been approved and widely used as an animal feed additive in China since 2003. However, investigations indicate that QCT shows potential toxicity both in vitro and in vivo. Although voltage dependent anion channel 1 (VDAC1) involved in regulating QCT-induced apoptotic cell death has been established, the role of voltage dependent anion channel 2 (VDAC2) in QCT-induced toxicity remains unclear. In this study, we showed that QCT-induced cell death was coupled to VDAC2 oligomerization. Moreover, VDAC inhibitor 4, 4'-diisothiocyano stilbene-2, 2'-disulfonic acid (DIDS) alleviated QCT-induced cell death and VDAC2 oligomerization. Meanwhile, overexpression VDAC2 aggravated QCT-induced VDAC2 oligomerization. In addition, caspase inhibitor Z-VAD-FMK and reactive oxidative species (ROS) scavenger N-acetyl-l-cysteine (NAC) apparently blocked QCT-induced cell death and VDAC2 oligomerization. Finally, overexpression N-terminal truncated VDAC2 attenuated QCT-induced VDAC2 oligomerization but had no influence on its localization to mitochondria when comparing to the full length of VDAC2. Taken together, our results reveal that ROS-mediated VDAC2 oligomerization is associated with QCT-induced apoptotic cell death. The N-terminal region of VDAC2 is required for QCT-induced VDAC2 oligomerization.


Asunto(s)
Hepatocitos/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Oxidantes/toxicidad , Quinoxalinas/toxicidad , Especies Reactivas de Oxígeno/agonistas , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Inhibidores de Caspasas/farmacología , Dimerización , Depuradores de Radicales Libres , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Hep G2 , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Moduladores del Transporte de Membrana/farmacología , Microscopía Fluorescente , Mitocondrias Hepáticas/metabolismo , Concentración Osmolar , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Multimerización de Proteína/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/antagonistas & inhibidores , Canal Aniónico 2 Dependiente del Voltaje/química
19.
Food Chem Toxicol ; 108(Pt A): 148-160, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28757460

RESUMEN

Olaquindox, a quinoxaline 1,4-di-N-oxide, is known as an antibacterial agent and feed additive to treat bacterial infections and promote animal growth. However, the potential mechanism of toxicity is still unknown. The present study aims to explore the molecular mechanism of p21 on olaquindox-induced mitochondrial apoptosis and S-phase arrest in human hepatoma G2 cells (HepG2). As a result, olaquindox promoted production of ROS, suppressed the protein expression p21 in p53-independent way and phosphorylated p21. Meanwhile, olaquindox activated AKT and Nrf2/HO-1 pathway, up-regulated Bax/Bcl-2 ratio, disrupted mitochondrial membrane potential (MMP) and subsequently caused cytochrome c release and a cascade activation of caspase, eventually induced apoptosis. Olaquindox could induce S-phase arrest in HepG2 cells involved with the increase of Cyclin A, Cyclin E and CDK 2. Furthermore, knockdown of p21 decreased cell viability, enhanced oxidative stress, aggravated olaquindox-induced mitochondrial apoptosis and S-phase arrest involvement of activating PI3K/AKT and inhibiting Nrf2/HO-1 pathway. PI3K/AKT inhibitor (LY294002) and HO-1inhibitor (ZnPP-IX) both increased olaquindox-induced apoptosis and S-phase arrest. In conclusion, knockdown of p21 increased olaquindox-induced mitochondrial apoptosis and S-phase arrest through further activating PI3K/AKT and inhibiting Nrf2/HO-1pathway. Our study provided new insights into the molecular mechanism of olaquindox and shed light on the role of p21.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Mitocondrias/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinoxalinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Células Hep G2 , Humanos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética
20.
Molecules ; 22(4)2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387735

RESUMEN

Olaquindox, a feed additive, has drawn public attention due to its potential mutagenicity, genotoxicity, hepatoxicity and nephrotoxicity. The purpose of this study was to investigate the role of tuberous sclerosis complex (TSC2) pathways in olaquindox-induced autophagy in human embryonic kidney 293 (HEK293) cells. The results revealed that olaquindox treatment reduced the cell viability of HEK293 cells and downregulated the expression of TSC2 in a dose- and time-dependent manner. Meanwhile, olaquindox treatment markedly induced the production of reactive oxygen species (ROS), cascaded to autophagy, oxidative stress, and apoptotic cell death, which was effectively eliminated by the antioxidant N-acetylcysteine (NAC). Furthermore, overexpression of TSC2 attenuated olaquindox-induced autophagy in contrast to inducing the production of ROS, oxidative stress and apoptosis. Consistently, knockdown of TSC2 upregulated autophagy, and decreased olaquindox-induced cell apoptosis. In conclusion, our findings indicate that TSC2 partly participates in olaquindox-induced autophagy, oxidative stress and apoptosis, and demonstrate that TSC2 has a negative regulation role in olaquindox-induced autophagy in HEK293 cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Quinoxalinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Células HEK293 , Humanos , Estrés Oxidativo/efectos de los fármacos , Proteína 2 del Complejo de la Esclerosis Tuberosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA