RESUMEN
In this study, vinyltriethoxysilane (TEVS) was introduced onto the surface of carbon fiber using liquid-phase oxidation and impregnation methods to incorporate vinyl groups onto the carbon fiber, thereby enhancing the chemical bonding between the carbon fiber and norbornene-polyimide (PI-NA). Through a systematic study of the hydrolysis conditions and concentration of the TEVS solution, the optimal modification conditions were determined. These conditions were used to graft TEVS onto the surface of oxidized carbon fiber to prepare carbon-fiber-reinforced PI-NA composites (CF/PI-NA). The results show that when carbon fiber was treated with a 0.4 wt% TEVS solution, the interlaminar shear strength (ILSS) of the composites reached 65.12 MPa, and the interfacial shear strength (IFSS) reached 88.58 MPa, representing increases of 27.58% and 35.62%, respectively, compared to the CF/PI-NA composite materials prepared from untreated carbon fiber. It is worth noting that the modification method described in the study is simple and easy to implement, and it has the potential for large-scale continuous production applications.
RESUMEN
Not all antibiotic resistance genes (ARGs) pose an ecological risk to their host animals. A standard should be developed to study which types of ARGs posed an ecological risk to wild animals under human disturbances (HDs). In this study, the golden snub-nosed monkeys (Rhinopithecus roxellana) were used as sentinel species. According to the animals-associated enrichment, mobility, and pathogenicity, the ARGs in habitat of sentinel species were divided into four levels. If the mobile and pathogenic ARGs that could be collinear with the metagenome-assembled genome (MAGs) in the gut of the sentinel species, the ARGs were defined as Rank I ARGs and they were considered to have ecological risk to sentinel species. Functional genes in the MAGs that collinear with the Rank I ARGs were used to predict the health risks of sentinel species. The ecological risk to sentinel species was present in 0.158â¯% of the ARGs-contigs in the habitat. Cultivation and villages, but not grazing, agriculture and ecotourism, increased the ecological risk of the ARGs to wild animals, The ability of gut microbiome to acquire mobile and pathogenic ARGs increased, as did the collinear functional genes, and the health risks of the wild animals also enhanced by the disturbances of cultivation and villages. Cultivation and villages increased the nutrient content of the soil, and they had a positive effect on the ecological risk of Rank I ARGs by affecting the mobile genetic elements (MGEs), microbiome and the resistant group in the habitat, which was why the cultivation and villages increased the health risks of wild animals. We proposed that cultivation and living should be controlled, while grazing, agriculture and ecotourism could be developed in nature reserves of wild animals, but the nutrients in the wild animals' habitat should be monitored.
Asunto(s)
Animales Salvajes , Farmacorresistencia Microbiana , Ecosistema , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Humanos , Animales Salvajes/microbiología , Medición de Riesgo , Colobinae/microbiología , Colobinae/genética , Metagenómica , Metagenoma , Monitoreo del Ambiente , Antibacterianos/farmacología , Antibacterianos/toxicidadRESUMEN
Lettuce (Lactuca sativa L., Asteraceae) is one of the most important vegetable crops, known for its various horticultural types and significant morphological variation. The first reference genome of lettuce, a crisphead type (L. sativa var. capitata cv. Salinas), was previously released. Here, we reported a near-complete chromosome-level reference genome for looseleaf lettuce (L. sativa var. crispa). PacBio high-fidelity sequencing, Oxford Nanopore, and Hi-C technologies were employed to produce genome assembly. The final assembly is 2.59 Gb in length with a contig N50 of 205.47 Mb, anchored onto nine chromosomes, containing 14 recognizable telomeres and only 11 gaps. Repetitive sequences account for 77.11% of the genome, and 41,375 protein-coding genes were predicted, with 99.10% of these assigned functional annotations. This chromosome-level genome enriched genomic resources for various horticultural types of lettuce and will facilitate the characterization of morphological variation and genetic improvement in lettuce.
Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Lactuca , Cromosomas de las Plantas/genética , Lactuca/genéticaRESUMEN
Brown planthopper (BPH) is the most destructive insect pest of rice. Drought is the most detrimental environmental stress. BPH infestation causes adaxial leaf-rolling and bulliform cells (BCs) shrinkage similar to drought. The BC-related abaxially curled leaf1 (ACL1) gene negatively regulates BPH resistance and drought tolerance, with decreased cuticular wax in the gain-of-function mutant ACL1-D. ACL1 shows an epidermis-specific expression. The TurboID system and multiple biochemical assays reveal that ACL1 interacts with the epidermal-characteristic rice outermost cell-specific (ROC) proteins. ROC4 and ROC5 positively regulate BPH resistance and drought tolerance through modulating cuticular wax and BCs, respectively. Overexpression of ROC4 and ROC5 both rescue ACL1-D mutant in various related phenotypes. ACL1 competes with ROC4/ROC5 in homo-dimer and hetero-dimer formation, and interacts with the repressive TOPLESS-related proteins. Altogether, we illustrate that ACL1-ROC4/5 complexes synergistically mediate drought tolerance and BPH resistance through regulating cuticular wax content and BC development in rice, a mechanism that might facilitate BPH-resistant breeding.
Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Hemípteros , Oryza , Proteínas de Plantas , Hemípteros/fisiología , Oryza/parasitología , Oryza/genética , Oryza/metabolismo , Animales , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Hojas de la Planta/parasitología , Hojas de la Planta/metabolismo , Ceras/metabolismo , Estrés FisiológicoRESUMEN
The regulation of gene expression is crucial for biological plant growth and development, with transcription factors (TFs) serving as key switches in this regulatory mechanism. GOLDEN2-LIKE (GLK) TFs are a class of functionally partially redundant nuclear TFs belonging to the GARP superfamily of MYB TFs that play a key role in regulating genes related to photosynthesis and chloroplast biogenesis. Here, we summarized the current knowledge of the pleiotropic roles of GLKs in plants. In addition to their primary functions of controlling chloroplast biogenesis and function maintenance, GLKs have been proven to regulate the photomorphogenesis of seedlings, metabolite synthesis, flowering time, leaf senescence, and response to biotic and abiotic stress, ultimately contributing to crop yield. This review will provide a comprehensive understanding of the biological functions of GLKs and serve as a reference for future theoretical and applied studies of GLKs.
RESUMEN
Introduction: Gut microbiome plays a crucial role in the health of wild animals. Their structural and functional properties not only reflect the host's dietary habits and habitat conditions but also provide essential support for ecological adaptation in various environments. Methods: This study investigated the gut microbiome of Himalayan langurs (Semnopithecus schistaceus) and Xizang macaques (Macaca mulatta vestita) across different geographic regions using 16S rRNA gene and metagenomic sequencing. Results: Results showed distinct clustering patterns in gut microbiota based on geographic location. Soil had an insignificant impact on host gut microbiome. Himalayan langurs from mid-altitude regions exhibited higher levels of antibiotic resistance genes associated with multidrug resistance, while Xizang macaques from high-altitude regions showed a broader range of resistance genes. Variations in carbohydrate-active enzymes and KEGG pathways indicated unique metabolic adaptations to different environments. Discussion: These findings provide valuable insights into the health and conservation of these primates and the broader implications of microbial ecology and functional adaptations in extreme conditions.
RESUMEN
Background: Microplastics (MPs) has been rapidly increasing and interacting with wildlife. As the highest altitudes inhabited non-human primate, Yunnan snub-nosed monkey (Rhinopithecus bieti) have been proven to be an umbrella and flagship species to indicate ecosystem changes and help develop environmental management strategies. In this study, we aimed to investigate the behavioral and ecological reasons for the types, content and differences of MPs in the feces of R. bieti, and explored the effects of MPs on gut microbiome of R. bieti. Methods: We used the Agilent 8700 LDIR to identify the abundance and size distribution of MPs in fecal samples, and then analyzed the causes of differences in MPs content by combining data from different populations (wild group, provisioned wild group) and dominance hierarchy. At the same times, the relationships were investigated between gut microbiome diversity and MPs content. Results: We first demonstrate MPs ingestion by R. bieti, which highlights the potential impacts of MPs pollution in such high-altitude, inaccessible protected areas. A total of 36 types of MPs were detected, with an average of 75.263 ± 58.141MPs/g. Food provisioning and tourism significantly increased the content of MPs in the feces of R. bieti, but tourism alone did not significantly increase the content of MPs as food provisioning. At the same time, the study found that there was no significant difference in the content of MPs between different sex groups, however, the feces MPs content of adult R. bieti was significantly lower than that of juvenile, and the social dominance hierarchies among OMUs was positively correlated with the exposure of MPs. The current level of MPs pollution did not cause gut microbiome dysbiosis of R. bieti. Conclusion: Our study proved from behavioral and ecological perspectives that the R. bieti exposure to MPs was related to provisioned food, and was closely related to dominance hierarchy and age. From the perspective of intestinal microbiology, it was proved that the current intake of MPs did not cause gut microbiome dysbiosis of R. bieti. Our study provided scientific basis for formulating effective protection measures and promoting the effective protection of rare and endangered animals.
RESUMEN
Protein posttranslational modifications play crucial roles in plant immunity through modulating a complicated signaling network mediated by different hormones. We previously demonstrated that OsATL32, an ATL-type E3 ligase, negatively contributes to rice immunity against Magnaporthe oryzae. Here, we show that OsATL32 forms a loop with OsPPKL2 and OsGSK2 through distinct protein posttranslational modifications to modulate rice immunity. OsATL32 ubiquitinates OsPPKL2, a protein phosphatase with Kelch-like repeat domains that exerts positive roles in regulating rice immunity against M. oryzae and chitin-triggered immune responses, for degradation. The glycogen synthase kinase 2 (OsGSK2), which acts as a negative regulator of rice immunity against M. oryzae and chitin-triggered immune responses, phosphorylates OsATL32 to elevate its protein stability and E3 ligase activity on OsPPKL2. Moreover, OsPPKL2 directly dephosphorylates OsGSK2, affecting its kinase activity on substrates including OsATL32 for phosphorylation. Like OsGSK2 as a BR signaling repressor, OsATL32 negatively regulates BR signaling; conversely, OsPPKL2 plays a positive role in BR signaling. These findings provide a molecular mechanism in which OsATL32 serves as a node connecting BR signaling and immunity by associating with OsPPKL2 and OsGSK2, assembling into a distinct protein posttranslational modifications-linked loop that functions in rice BR signaling and immunity.
Asunto(s)
Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Procesamiento Proteico-Postraduccional , Oryza/genética , Oryza/inmunología , Oryza/microbiología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Fosforilación , Ubiquitinación , Transducción de Señal , Magnaporthe/fisiología , Brasinoesteroides/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Regulación de la Expresión Génica de las Plantas , Quitina/metabolismo , Glucógeno Sintasa Quinasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , AscomicetosRESUMEN
NAC transcription factors (TFs) are pivotal in plant immunity against diverse pathogens. Here, we report the functional and regulatory network of MNAC3, a novel NAC TF, in rice immunity. MNAC3, a transcriptional activator, negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern (PAMP)-triggered immune responses. MNAC3 binds to a CACG cis-element and activates the transcription of immune-negative target genes OsINO80, OsJAZ10, and OsJAZ11. The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10. MNAC3 interacts with immunity-related OsPP2C41 (a protein phosphatase), ONAC066 (a NAC TF), and OsDjA6 (a DnaJ chaperone). ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity, while OsDjA6 promotes it. Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity. OsPP2C41, which plays positive roles in rice blast resistance and chitin-triggered immune responses, dephosphorylates MNAC3, suppressing its transcriptional activity on the target genes OsINO80, OsJAZ10, and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm. These results establish a MNAC3-centered regulatory network in which OsPP2C41 dephosphorylates MNAC3, attenuating its transcriptional activity on downstream immune-negative target genes in rice. Together, these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.
Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Factores de Transcripción , Oryza/genética , Oryza/microbiología , Oryza/inmunología , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Inmunidad de la Planta/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Resistencia a la Enfermedad/genética , Redes Reguladoras de Genes , FosforilaciónRESUMEN
Receptor-like cytoplasmic kinases (RLCKs) represent a distinct class of receptor-like kinases crucial for various aspects of plant biology, including growth, development, and stress responses. This study delves into the characterization of RLCK VII-8 members within cucurbits, particularly in melon, examining both structural features and the phylogenetic relationships of these genes/proteins. The investigation extends to their potential involvement in disease resistance by employing ectopic overexpression in Arabidopsis. The promoters of CmRLCK VII-8 genes harbor multiple phytohormone- and stress-responsive cis-acting elements, with the majority (excluding CmRLCK39) displaying upregulated expression in response to defense hormones and fungal infection. Subcellular localization studies reveal that CmRLCK VII-8 proteins predominantly reside on the plasma membrane, with CmRLCK29 and CmRLCK30 exhibiting additional nuclear distribution. Notably, Arabidopsis plants overexpressing CmRLCK30 manifest dwarfing and delayed flowering phenotypes. Overexpression of CmRLCK27, CmRLCK30, and CmRLCK34 in Arabidopsis imparts enhanced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000, concomitant with the strengthened expression of defense genes and reactive oxygen species accumulation. The CmRLCK VII-8 members actively participate in chitin- and flg22-triggered immune responses. Furthermore, CmRLCK30 interacts with CmMAPKKK1 and CmARFGAP, adding a layer of complexity to the regulatory network. In summary, this functional characterization underscores the regulatory roles of CmRLCK27, CmRLCK30, and CmRLCK34 in immune responses by influencing pathogen-induced defense gene expression and ROS accumulation.
Asunto(s)
Arabidopsis , Botrytis , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Pseudomonas syringae , Arabidopsis/genética , Arabidopsis/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Botrytis/fisiología , Botrytis/patogenicidad , Pseudomonas syringae/fisiología , Pseudomonas syringae/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cucurbitaceae/microbiología , Cucurbitaceae/genética , Filogenia , Plantas Modificadas GenéticamenteRESUMEN
TGA-binding (TGA) transcription factors, characterized by the basic region/leucine zipper motif (bZIP), have been recognized as pivotal regulators in plant growth, development, and stress responses through their binding to the as-1 element. In this study, the TGA gene families in melon, watermelon, cucumber, pumpkin, and zucchini were comprehensively characterized, encompassing analyses of gene/protein structures, phylogenetic relationships, gene duplication events, and cis-acting elements in gene promoters. Upon transient expression in Nicotiana benthamiana, the melon CmTGAs, with typical bZIP and DOG1 domains, were observed to localize within the nucleus. Biochemical investigation revealed specific interactions between CmTGA2/3/5/8/9 and CmNPR3 or CmNPR4. The CmTGA genes exhibited differential expression patterns in melon plants in response to different hormones like salicylic acid, methyl jasmonate, and ethylene, as well as a fungal pathogen, Stagonosporopsis cucurbitacearum that causes gummy stem blight in melon. The overexpression of CmTGA3, CmTGA8, and CmTGA9 in Arabidopsis plants resulted in the upregulation of AtPR1 and AtPR5 expression, thereby imparting enhanced resistance to Pseudomonas syringae pv. Tomato DC3000. In contrast, the overexpression of CmTGA7 or CmTGA9 resulted in a compromised resistance to Botrytis cinerea, coinciding with a concomitant reduction in the expression levels of AtPDF1.2 and AtMYC2 following infection with B. cinerea. These findings shed light on the important roles of specific CmTGA genes in plant immunity, suggesting that genetic manipulation of these genes could be a promising avenue for enhancing plant immune responses.
Asunto(s)
Arabidopsis , Cucurbitaceae , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/microbiología , Plantas Modificadas Genéticamente , Familia de Multigenes , Filogenia , Expresión Génica Ectópica , Genoma de Planta , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismoRESUMEN
Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is a kind of post-translational protein modification that is involved in various cellular processes in fungi, plants, and mammals. However, the function of PARPs in plant pathogenic fungi remains unknown. The present study investigated the roles and mechanisms of FonPARP1 in watermelon Fusarium wilt fungus Fusarium oxysporum f. sp. niveum (Fon). Fon has a single PARP FonPARP1 and one PARG FonPARG1. FonPARP1 is an active PARP and contributes to Fon pathogenicity through regulating its invasive growth within watermelon plants, while FonPARG1 is not required for Fon pathogenicity. A serine/threonine protein kinase, FonKin4, was identified as a FonPARP1-interacting partner by LC-MS/MS. FonKin4 is required for vegetative growth, conidiation, macroconidia morphology, abiotic stress response and pathogenicity of Fon. The S_TKc domain is sufficient for both enzyme activity and pathogenicity function of FonKin4 in Fon. FonKin4 phosphorylates FonPARP1 in vitro to enhance its poly(ADP-ribose) polymerase activity; however, FonPARP1 does not PARylate FonKin4. These results establish the FonKin4-FonPARP1 phosphorylation cascade that positively contributes to Fon pathogenicity. The present study highlights the importance of PARP-catalyzed protein PARylation in regulating the pathogenicity of Fon and other plant pathogenic fungi.
RESUMEN
Studying the ecological risk of antibiotic resistance genes (ARGs) to wild animals from human disturbance (HD) is an important aspect of "One Health". The highest risk level of ARGs is reflected in pathogenic antibiotic-resistant bacteria (PARBs). Metagenomics was used to analyze the characteristics of PARBs in river sediments. Then, the total contribution of ARGs and virulence factors (VFs) were assessed to determine the health risk of PARBs to the rivers. Results showed that HD increased the diversity and total relative abundance of ARG groups, as well as increased the kinds of PARBs, their total relative abundance, and their gene numbers of ARGs and VFs. The total health risks of PARBs in wild habitat group (CK group), agriculture group (WA group), grazing group (WG group), and domestic sewage group (WS group) were 0.067 × 10-3, -1.55 × 10-3, 87.93 × 10-3, and 153.53 × 10-3, respectively. Grazing and domestic sewage increased the health risk of PARBs. However, agriculture did not increase the total health risk of the rivers, but agriculture also introduced new pathogenic mechanisms and increased the range of drug resistance. More serious was the increased transfer risk of ARGs in the PARBs from the rivers to wild animals under agriculture and grazing. If the ARGs in the PARBs are transferred from the rivers under HD to wild animals, then wild animals may face severe challenges of acquiring new pathogenic mechanisms and developing resistance to antibiotics. Further analysis showed that the total phosphorus (TP) and dissolved organic nitrogen (DON) were related to the risk of ARGs. Therefore, controlling human emissions of TP and DON could reduce the health risk of rivers.
RESUMEN
BACKGROUND: MicroRNA396 (miR396) plays an important role in the regulation of plant growth and development by repressing the expression level of its target growth-regulating factor (GRF) family genes. In our previous study, we found that overexpression of miR396 negatively regulated both tillering and biomass yield in switchgrass (Panicum virgatum L.). We, therefore, speculated that blocking the expression of miR396 could enhance switchgrass tillering and biomass yield. Here, we produced transgenic switchgrass plants overexpressing a target mimicry form of miR396 (MIM396) in wild type (WT) and Os-MIR319b overexpressing switchgrass plant (with higher enzymatic hydrolysis efficiency, but reduced tillering), in which the expression of miR396 was blocked. The phenotype and biological yields of these plants were analyzed. RESULTS: Blocking miR396 to improve its target PvGRFs expression in switchgrass improved the tiller number and dry weight of transgenic plants. Further morphological analysis revealed that MIM396 plants increased the number of aerial branches and basal tillers compared to those of wild-type plants. The enzymatic efficiency of MIM396 plants was reduced; however, the total sugar production per plant was still significantly higher than that of wild-type plants due to the increase in biomass. In addition, blocking miR396 in a transgenic switchgrass plant overexpressing Os-MIR319b (TG21-Ms) significantly increased the PvGRF1/3/5 expression level and tiller number and biomass yield. The miR156-target gene PvSPL4, playing a negative role in aerial and basal buds outgrowth, showed significant downregulated in MIM396 and TG21-Ms. Those results indicate that miR396-PvGRFs, through disrupting the PvSPL4 expression, are involved in miR319-PvPCFs in regulating tiller number, at least partly. CONCLUSIONS: MIM396 could be used as a molecular tool to improving tiller number and biomass yield in switchgrass wild type and miR319b transgenic plants. This finding may be applied to other graminaceous plants to regulate plant biological yield.
RESUMEN
Increasing the ultraviolet radiation (UV) level, particularly UV-B due to damage to the stratospheric ozone layer by human activities, has huge negative effects on plant and animal metabolism. As a widely grown cool-season forage grass and turfgrass in the world, perennial ryegrass (Lolium perenne) is UV-B-sensitive. To study the effects of miR164, a highly conserved microRNA in plants, on perennial ryegrass under UV stress, both OsmiR164a overexpression (OE164) and target mimicry (MIM164) transgenic perennial ryegrass plants were generated using agrobacterium-mediated transformation, and UV-B treatment (~600 µw cm-2) of 7 days was imposed. Morphological and physiological analysis showed that the miR164 gene affected perennial ryegrass UV tolerance negatively, demonstrated by the more scorching leaves, higher leaf electrolyte leakage, and lower relative water content in OE164 than the WT and MIM164 plants after UV stress. The increased UV sensitivity could be partially due to the reduction in antioxidative capacity and the accumulation of anthocyanins. This study indicated the potential of targeting miR164 and/or its targeted genes for the genetic manipulation of UV responses in forage grasses/turfgrasses; further research to reveal the molecular mechanism underlying how miR164 affects plant UV responses is needed.
RESUMEN
The Sichuan golden snub-nosed monkey (Rhinopithecus roxellana) is a rare and endangered primate species endemic to China. Conducting research on the population distribution changes of the Sichuan golden snub-nosed monkey holds paramount importance for its conservation. Our study represented a comprehensive investigation into the population distribution of the Sichuan snub-nosed monkey by integrating data acquired from field surveys, protected areas, and historical records and using Geographic Information Systems (GIS) to explore changes in distribution across various time periods, including the historical (the Mid-to-Late Pleistocene), recent (1980-2000), and current (2001-2023). The research findings demonstrate a significant shift in the distribution range of the Sichuan golden snub-nosed monkey compared to historical time frames. Notably, between 1980 and 2000, there was a sharp decline in distribution area. Analyses revealed that the southernmost distribution county for the Sichuan golden snub-nosed monkey in Sichuan Province has shifted northward from Huili to Kangding. Furthermore, distribution changes in Sichuan Province are not solely characterized by a reduction in habitat area but also by a decrease in vertical distribution zones. Regions in the northeastern part of Sichuan with elevations below 1000 m, such as Guang'an City, Bazhong City, Dazhou City, and Nanchong City, no longer support the presence of the Sichuan golden snub-nosed monkey. At present, the distribution range is confined to elevations between 1000 and 4000 m in the two major mountain ranges of Qionglai and Minshan. A holistic approach is required to safeguard this species. The establishment of movement corridors can play a critical role in enhancing the overall connectivity of current distribution areas. Additionally, we propose implementing a hierarchical approach to protect current habitats. Spatially differentiated conservation measures should be implemented to prioritize the protection of key habitats while simultaneously monitoring anthropogenic activities in non-key habitats to prevent further fragmentation and isolation of the monkey's distribution areas.
RESUMEN
Experimental studies have demonstrated that the gas phase contact angle (CA) of a surface nanobubble (SNB) is much smaller than that of a macroscopic gas bubble. This reduced CA plays a crucial role in prolonging the lifetime of SNBs by lowering the bubble pressure and preventing gas molecules from dissolving in the surrounding liquids. Despite extensive efforts to explain the anomalously small CA, a consensus about the underlying reasons is yet to be reached. In this study, we conducted experimental investigations to explore the influence of gas molecules adsorbed at the solid-liquid interface on the CA of SNBs created through the solvent exchange (SE) method and temperature difference (TD). Interestingly, no significant change is observed in the CA of SNBs on highly oriented pyrolytic graphite (HOPG) surfaces. Even for nanobubbles on micro/nano pancakes, the CA only exhibited a slight reduction compared to SNBs on bare HOPG surfaces. These findings suggest that gas adsorption at the immersed solid surface may not be the primary factor contributing to the small CA of the SNBs. Furthermore, the CA of SNBs formed on polystyrene (PS) and octadecyltrichlorosilane (OTS) substrates was also investigated, and a considerable increase in CA was observed. In addition, the effects of other factors including impurity, electric double layer (EDL) line tension, and pinning force upon the CA of SNBs were discussed, and a comprehensive model about multiple factors affecting the CA of SNBs was proposed, which is helpful for understanding the abnormally small CA and the stability of SNBs.
RESUMEN
Ubiquitination-mediated protein degradation is integral to plant immunity, with E3 ubiquitin ligases acting as key factors in this process. Here, we report the functions of OsATL32, a plasma membrane-localized Arabidopsis Tóxicos En Levadura (ATL)-type E3 ubiquitin ligase, in rice (Oryza sativa) immunity and its associated regulatory network. We found that the expression of OsATL32 is downregulated in both compatible and incompatible interactions between rice and the rice blast fungus Magnaporthe oryzae. The OsATL32 protein level declines in response to infection by a compatible M. oryzae strain or to chitin treatment. OsATL32 negatively regulates rice resistance to blast and bacterial leaf blight diseases, as well as chitin-triggered immunity. Biochemical and genetic studies revealed that OsATL32 suppresses pathogen-induced reactive oxygen species (ROS) accumulation by mediating ubiquitination and degradation of the ROS-producing OsRac5-OsRbohB module, which enhances rice immunity against M. oryzae. The protein phosphatase PHOSPHATASE AND TENSIN HOMOLOG enhances rice blast resistance by dephosphorylating OsATL32 and promoting its degradation, preventing its negative effect on rice immunity. This study provides insights into the molecular mechanism by which the E3 ligase OsATL32 targets a ROS-producing module to undermine rice immunity.