Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 260: 121978, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38924808

RESUMEN

Sewage sludge adsorbs a large amount of harmful organic pollutants, particularly the persistent and hydrophobic polyhalogenated compounds (PHCs). PHCs have been subjected to biological and chemical oxidation treatments during wastewater treatment processes; however, the species and concentrations of their transformation products (TPs) in sludge remain unknown, and the transformation pathways are unclear. In this study, 234 TPs of PHCs, including 77 TPs of chlorinated paraffins (CPs-TPs), 102 TPs of organochlorine pesticides (OCPs-TPs), 45 TPs of dechlorane plus (DPs-TPs), and 10 TPs of brominated flame retardants (BFRs-TPs), were identified in sludge through Ph4PCl-enhanced ionization coupled with ultra-performance liquid chromatography-Orbitrap-mass spectrometry. Based on the chemical structures of the identified TPs, we identified three major transformation pathways: dehalogenation-hydroxylation, carbon chain decomposition, and desulfurization. Approximately 97 TPs were newly discovered through the pathways. Carbon chain decomposition products of OCPs and DPs were detected for the first time at relatively high abundances. More hydroxylation products of DPs and hexabromocyclododecane (HBCD) and multi-dehalogenation products of heptachlor, toxaphene, DPs and HBCDs were detected at relative intensities higher than those of the known TPs. The oxidation treatment of sludge achieved up to 13 %-94 % of PHCs to be removed, with dehalogenation-hydroxylation as the main transformation pathway. Advanced treatment technologies are needed for degradation of both PHCs and their TPs.

2.
Environ Sci Technol ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324775

RESUMEN

Chlorinated paraffins (CPs) are manufactured and used in high quantities and have diverse structural analogues. It is generally recognized that sulfur-containing structural analogues of CPs are mainly derived from sulfate-conjugated phase II metabolism. In this study, we non-targeted identified three classes of sulfur-containing CP structural analogues (CPs-S) in human serum, including 44 CP sulfates (CPs-SO4H/CPs-SO4H-OH), 14 chlorinated benzene sulfates (CBs-SO4H), and 19 CP sulfite esters (CPs-SO3/CPs-S2O6), which were generated during the production of commercial mixtures of CPs and, thus, bioaccumulated via environmental exposures. We first wrote a program to screen CPs-S, which were baseline-separated from CPs according to their polar functional groups. Then, mass spectral analyses of alkalization-acidification liquid-liquid extracts of serum samples and Orbitrap mass spectrometry analyses in the presence and absence of tetraphenylphosphonium chloride (Ph4PCl), respectively, were performed to determine the ionization forms ([M + Cl]- or [M - H]-) of CPs-S. The presence of fragment ions (SO4H-, SO3-, SO2Cl-, and HSO3-) revealed the structures of CPs-S, which were validated by their detections in commercial mixtures of CPs. The estimated total concentrations of CPs-S in the human serum samples were higher than the concentrations of medium- and long-chain CPs. The profiles of CPs-S in human serum were similar to those detected in CP commercial mixtures and rats exposed to the commercial mixtures, but CPs-S were not detected in human liver S9 fractions or rat tissues after exposure to CP standards. These results, together with the knowledge of the processes used to chemically synthesize CPs, demonstrate that CPs-S in humans originates from environmental bioaccumulation.

3.
Water Res ; 250: 121073, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154342

RESUMEN

Owing to the extensive production and widespread use of chlorinated paraffins (CPs), various CP structural analogs (CPSAs) have been detected in the environment, and these hydrophobic pollutants preferentially adsorb onto sludge during treatment. However, the species and sources of CPSAs in sludge and their subsequent fate during sludge oxidation treatments remain unclear. In this study, 320 nitrogen- or sulfur-containing CPs (205 CPs-N and 115 CPs-S) were detected in sludge through an analysis of Ph4PCl-enhanced ionization coupled with ultra-performance liquid chromatography (UPLC)-orbitrap-mass spectrometry (MS). The intensities of the newly found CPSAs were approximately 3.9-4.1 times those of CPs. Among these CPSAs, 273 previously unknown compounds, namely, 184 CPs-NO3, 63 CPs-SO4H, and 26 CPs-SH, were identified based on the characteristic fragments of NO3, SO4H, and SH, respectively. MS/MS analysis showed that the identified CPs-NO3 included 74 CPs-NO3, 71 CPs-NO3-NH2, 23 CPs-NO3-OH, and 16 CPs-NO3-NH2-OH; CPs-SO4H included 40 CPs-SO4H and 23 CPs-SO4H-OH; and CPs-SH could be divided into 19 2-(methylthio)acetamide-, 6 2-(methylthio)acetamide-cysteine-, and 1 N-acetylcysteine- containing CPs. High abundances of CPs-NO3 and CPs-SO4H were found in both sludge and CP commercial mixtures, indicating that these CPSAs likely originated from the production or use of industrial products. CPs-SH, which were present only in the sludge, were potentially derived from the biotransformation of CPs with amino acids. The oxidation of sludge resulted in the removal of 20.4-60.7 % of the newly identified CPSAs. The oxidation of CPs-NO3 and CPs-SO4H involved both carbon chain decomposition and hydroxylation processes, whereas CPs-SH underwent oxidation through carbon chain decomposition.


Asunto(s)
Hidrocarburos Clorados , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Parafina/análisis , Parafina/química , Nitratos/análisis , Aminoácidos , Ésteres , Espectrometría de Masas en Tándem , Hidrocarburos Clorados/química , Acetamidas , Carbono/análisis , Monitoreo del Ambiente/métodos
4.
Sci Total Environ ; 833: 155272, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35427618

RESUMEN

As a by-product of wastewater treatment, waste activated sludge (WAS) has complex composition, strong hydrophilic extracellular polymeric substance (EPS), which make it difficult to dewater. In this study, an electro-peroxone oxidation-Fe(III) coagulation (E-peroxone-Fe(III)) sequential conditioning approach was developed to improve WAS dewaterability. At E-peroxone oxidation stage, hydrogen peroxide was generated through 2-electron path on a carbon polytetrafluoroethylene cathode, and reacted with the sparged O3 to produce hydroxyl radicals. At the subsequent coagulation stage, Fe(III) was dosed to coagulate the small WAS fragments and release water from WAS. Along E-peroxone-Fe(III) subsequent conditioning process, the physicochemical properties of WAS, main components, functional groups and evolution of protein secondary structure, and typical amino acids in EPS, as well as the type and semi-quantitative of elements in WAS, were investigated. The results indicated that under the optimal conditions, the reductions of specific resistance to filterability (SRF) and capillary suction time (CST) for WAS equalled 78.18% and 71.06%, respectively, and its bound water content decreased from 8.87 g/g TSS to 7.67 g/g TSS. After E-peroxone oxidation, part of protein and polysaccharide migrated outside from TB-EPS to slime, the ratio of α-helix/(ß-sheet + random coil) declined, even some of organic-N disintegrated to inorganic-N. At Fe(III) coagulation stage, re-coagulation of the dispersed WAS fragments and easy extraction from inner EPS for protein and polysaccharide occurred. Furthermore, the protein secondary structure of ß-sheet increased by 13.48%, the contents of hydrophobic and hydrophilic amino acids also increased. In addition, a strong negative correlation between the hydrophobic amino acid content of Met in slime and CST or SRF (R2CST = -0.999, p < 0.05 or R2SRF = -0.948, p < 0.05) occurred, while a strong positive correlation between the hydrophilic amino acid content of Cys in TB-EPS and CST or SRF (R2CST = 0.992, p < 0.05 or R2SRF = 0.921, p < 0.05) occurred, which could be related to the WAS dewaterability.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Aminoácidos , Compuestos Férricos , Oxidación-Reducción , Polisacáridos , Proteínas , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Agua/química
5.
J Colloid Interface Sci ; 606(Pt 1): 500-509, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34403859

RESUMEN

Microscopic structure and size are important metrics for estimating aggregates environmental behaviors during water and wastewater treatment. However, in-situ determination of these characteristics is still a challenge. Here, we drew inspiration from a block disassembly process to propose an electrical impedance spectroscopy (EIS) method and constructed a generalized framework to associate macroscale electrical properties with microscopic structure and size-related characteristics of aggregates of different hierarchies. Extracted via EIS, the proposed models were verified to be capable of describing the self-similarity of aggregates and capturing the fractal and size information. Further, the proposed models exhibited a wide range of applications, which agrees well with the data gathered from various activated sludges, other colloids, and microgels in water and wastewater treatment. Finally, the EIS method was achieved online monitoring of fractal dimension and floc size during a sludge pre-oxidation conditioning process, which was elected as an example to illustrate the potential online applications of this EIS method in real water and wastewater environment. The obtained on-line data were used to indicate the potential suitable oxidation time during sludge pre-oxidation conditioning. These observations may inspire new methods of quantifying the aggregate structure and promote intelligent and dynamic decision-making during water and wastewater treatment.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Espectroscopía Dieléctrica , Floculación , Agua
6.
Water Res ; 201: 117352, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34157572

RESUMEN

In this study, the siderite/PMS conditioning-pressurized vertical electro-osmotic dewatering (PEOD) process was used to reduce the volume of activated sludge (AS). The changes in water content, cell, extracellular polymeric substances (EPS) distribution, protein secondary structures and typical amino acids in EPS fractions of AS along siderite/PMS conditioning-PEOD process were investigated. Results showed that the final water content (WC) of dewatered AS was 58.02% under the RSM optimized conditioning conditions of 0.05 g/g TSS siderite dosage, 0.23 g/g TSS PMS dosage, 600 kPa mechanical pressure and 20 V voltage. At conditioning and PEOD stages, the bound water content(BWC) of AS decreased by 25.23% and 91.76%, respectively. The HO• and SO4-· generated from siderite activating PMS could lead to the disruption of cells. The ratio of Ala-to Lys (Ala/Lys) showed strong negative correlations with BWC or WC in slime (RBWC2=-0.803, p<0.01; RWC2=-0.771, p<0.01) and TB-EPS (RBWC2=-0.693, p<0.01; RWC2=-0.705, p<0.01), and could be considered as an indicator of AS dewaterability. Compared with raw AS, conditioning led to the occurrence of the denser protein structure in TB-EPS and the looser one in slime. The contact number between Ala-and water decreased in TB-EPS and increased in slime, which indicated that the migration of water adhered in TB-EPS to outer layer. At the DG, MC and EC process, while the looser protein structure in TB-EPS and the denser one in slime occurred, as well as higher contact number between Ala-and water in TB-EPS than that in slime, which indicated that more water flowed outsider of slime than TB-EPS. This implied that the variations of the compactness of protein secondary structures and the contact number between Ala-and water in EPS layers correlated with AS dewaterability.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Aminoácidos , Carbonatos , Compuestos Férricos , Eliminación de Residuos Líquidos , Agua
7.
J Hazard Mater ; 402: 123441, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32688188

RESUMEN

Peroxone disintegration-Fe(III) coagulation (peroxone-Fe(III)) joint conditioning was proposed to enhance the horizontal electro-dewatering (HED) effect of activated sludge (AS). Operating parameters were optimized and the evolutions of AS physicochemical properties, water fractions distribution, organic matter, extracellular polymeric substance (EPS) key components, functional groups, and protein secondary structures during the process were identified. Under the optimized joint conditioning parameters, dewatered AS achieved a final water content of 84.88 ± 0.17% and its bound water content (BWC) was decreased by 1.88 ± 0.28 g/g dry solid. During peroxone pretreatment, the yielded HO decreased the AS floc size, disintegrated the EPS network structure and cell wall, released the bound water, and extracted proteins, polysaccharides, and humic acid-like materials. Furthermore, soluble microbial byproduct-like materials (SMBP) in the EPS layers and tyrosine in tightly bound EPS significantly increased. Protein structures were destroyed, decreasing their water affinity. Subsequent Fe(III) addition re-coagulated broken flocs fragments and EPS fractions, built water flow channels, removed tyrosine and SMBP, and reduced α-helix percentage in slime, facilitating AS dewatering. After joint conditioning, the bound water and intracellular substances were further released by HED. Therefore, the peroxone-Fe(III)-HED process exhibited an excellent performance in AS water reduction.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Compuestos Férricos , Sustancias Húmicas , Eliminación de Residuos Líquidos , Agua
9.
J Environ Sci (China) ; 91: 73-84, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32172984

RESUMEN

The effects of four conditioning approaches: Acid, Acid-zero-valent iron (ZVI)/peroxydisulfate (PMS), Fe(II)/PMS and ZVI/PMS, on wastewater activated sludge (WAS) dewatering and organics distribution in supernatant and extracellular polymeric substances (EPS) layers were investigated. The highest reduction in bound water and the most WAS destruction was achieved by Acid-ZVI/PMS, and the optimum conditions were pH 3, ZVI dosage 0.15 g/g dry solid (DS), oxone dosage 0.07 g/g DS and reaction time 10.6 min with the reductions in capillary suction time (CST) and water content (Wc) as 19.67% and 8.49%, respectively. Four conditioning approaches could result in TOC increase in EPS layers and supernatant, and protein (PN) content in tightly bound EPS (TB-EPS). After conditioning, organics in EPS layers could migrate to supernatant. Polysaccharide (PS) was easier to migrate to supernatant than PN. In addition, Acid, Acid-ZVI/PMS or Fe(II)/PMS conditioning promoted the release of some polysaccharides containing ring vibrations v PO, v C-O-C, v C-O-P functional groups from TB-EPS. ESR spectra proved that both radicals of SO4-· and ·OH contributed to dewatering and organics transformation and migration. CST value of WAS positively correlated with the ratios of PN/PS in LB-EPS and total EPS, while it negatively correlated with TOC, PN content and PS content in TB-EPS, as well as PS content in supernatant and LB-EPS. BWC negatively correlated to zeta potential and TOC value, PN content, and HA content in supernatant.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Matriz Extracelular de Sustancias Poliméricas , Compuestos Ferrosos , Hierro , Oxidación-Reducción , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...