Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Nutr ; : 1-34, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38826079

RESUMEN

This study was conducted to investigate whether methionyl-tRNA synthetase (MetRS) is a mediator of Met-induced crop milk protein synthesis via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) signalling pathway in breeding pigeons. In Experiment 1, a total of 216 pairs of breeding pigeons were divided into 3 groups (control, Met-deficient, and Met-rescue groups). In Experiments 2 and 3, forty pairs of breeding pigeons from each experiment were allocated into 4 groups. The 2nd experiment included a control group and 3 MetRS inhibitor (REP8839) groups. The 3rd experiment included a Met-deficient group, Met-sufficient group, REP8839 + Met-deficient group, and REP8839 + Met-sufficient group. Experiment 1 showed that Met supplementation increased crop development, crop milk protein synthesis, the protein expression of MetRS and JAK2/STAT5 signalling pathway, and improved squab growth. Experiment 2 showed that crop development, crop milk protein synthesis, and the protein expression of MetRS and the JAK2/STAT5 signalling pathway were decreased, and squab growth was inhibited by the injection of 1.0 mg/kg BW REP8839, which was the selected dose for the 3rd experiment. These results showed that Met supplementation increased crop development, crop milk protein synthesis, and the expression of MetRS and JAK2/STAT5 signalling pathway and rescued squab growth after the injection of REP8839. Moreover, the Co-IP results showed that there was an interaction between MetRS and JAK2. Taken together, these findings indicate that MetRS mediates Met-induced crop milk protein synthesis via the JAK2/STAT5 signalling pathway, resulting in improved squab growth in breeding pigeons.

2.
J Agric Food Chem ; 71(35): 13079-13091, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37632443

RESUMEN

l-Malic acid (l-MA) contributes to energy metabolism and nutrient digestion, which is an alternative to antibiotics for livestock; however, it is not clear whether l-MA can replace antibiotics to promote intestinal development in chicks. To investigate the effects of l-MA on intestinal stem cells (ISCs) driving epithelial renewal, we employed in vivo chick feeding experiments, chick intestinal organoid (IO) models, and in vitro chick intestinal epithelial cell models. The results showed that the feed conversion rate and diarrhea scores were decreased with improved jejunal morphology and barrier function in the 0.5% l-MA group. l-MA promoted the proliferation and differentiation of ISCs, inhibited the cell apoptosis, increased the IO formation efficiency, surface area, budding efficiency, and number of buds, suggesting that l-MA promoted the expansion of ISCs. Furthermore, l-MA treatment dramatically upregulated the Wnt/ß-catenin signaling pathway in the jejunum. Importantly, Wnt transmembrane receptor Frizzled7 (FZD7) mRNA abundance was increased in response to dietary 0.5% l-MA. In addition, molecular docking analysis using Autodock software and isothermal titration calorimetry revealed that l-MA binds to Lys91 of FZD7 with high affinity, indicating a spontaneous interaction. The chick intestinal epithelial cells treated with 10 µM l-MA significantly increased cell viability, and the Wnt/ß-catenin signaling pathway was activated, but l-MA failed to upregulate the Wnt/ß-catenin signaling when treated with the FZD7-specific inhibitor Fz7-21 in chick intestinal epithelial cells, indicating that FZD7 is indispensable for l-MA activation of the Wnt/ß-catenin signaling. Collectively, l-MA stimulated ß-catenin signaling by targeting transmembrane receptor FZD7, which promoted ISC expansion and inhibited cell apoptosis to accelerate intestinal epithelial renewal in chicks.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Simulación del Acoplamiento Molecular , Antibacterianos , Pollos
3.
World J Gastroenterol ; 27(6): 470-486, 2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33642822

RESUMEN

BACKGROUND: Liver cancer is a common cancer and the main cause of cancer-related deaths worldwide. Liver cancer is the sixth most common cancer in the world. Although miR-34a and palmitoyl membrane palmitoylated protein (MPP2) are reportedly involved in various cell processes, their precise roles in liver cancer are still unclear. AIM: To investigate the expression of micro RNA 34a (miR-34a), methylation of the miR-34a promoter and the expression of MPP2 in liver cancer cells and their related mechanisms. METHODS: Together, 78 cases of liver cancer tissues and 78 cases of adjacent tissues were collected. The methylation degree of miR-34a promoter in liver cancer/ paracancerous tissue and liver cancer cells/normal liver cells, and the expression levels of miR-34a and MPP2 in the above samples were detected. Demethylation of liver cancer cells or transfection of liver cancer cells with miR-34a mimetic was performed. The MPP2 overexpression vector was used to transfect liver cancer cells, and the changes in proliferation, invasion, apoptosis, migration, and other biological functions of liver cancer cells after the above interventions were observed. Double luciferase reporter genes were used to detect the targeting relationship between miR-34a and MPP2. RESULTS: Clinical samples showed that the expression levels of miR-34a and MPP2 in liver cancer tissues were lower than those in the normal tissues. The methylation degree of miR-34a promoter region in liver cancer cells was higher than that in normal liver cells. After miR-34a demethylation/mimetic transfection/MPP2 overexpression, the apoptosis of liver cancer cells was increased; the proliferation, invasion and migration capabilities were decreased; the expression levels of caspase 3, caspase 9, E-cadherin, and B-cell lymphoma 2 (Bcl-2)-associated X protein were increased; and the expression levels of Bcl-2, N-cadherin, and ß-catenin were decreased. Double luciferase reporter genes confirmed that MPP2 is targeted by miR-34a. Rescue experiments showed that small interfering MPP2 could counteract the promoting effect of miR-34a demethylation on apoptosis and the inhibitory effect on cell proliferation, invasion, and migration. CONCLUSION: miR-34a demethylation upregulates the expression level of MPP2 in liver cancer cells and promotes the apoptosis of liver cancer cells. miR-34a demethylation is a potential method for liver cancer treatment.


Asunto(s)
Apoptosis , Desmetilación , Neoplasias Hepáticas , MicroARNs , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Lipoilación , Neoplasias Hepáticas/genética , Proteínas de la Membrana/genética , MicroARNs/genética , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...