Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Nutr ; : 1-16, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38826079

RESUMEN

This study was conducted to investigate whether methionyl-tRNA synthetase (MetRS) is a mediator of methionine (Met)-induced crop milk protein synthesis via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) signalling pathway in breeding pigeons. In Experiment 1, a total of 216 pairs of breeding pigeons were divided into three groups (control, Met-deficient, and Met-rescue groups). In Experiments 2 and 3, forty pairs of breeding pigeons from each experiment were allocated into four groups. The second experiment included a control group and three MetRS inhibitor (REP8839) groups. The third experiment included a Met-deficient group, Met-sufficient group, REP8839 + Met-deficient group and REP8839 + Met-sufficient group. Experiment 1 showed that Met supplementation increased crop development, crop milk protein synthesis, the protein expression of MetRS and JAK2/STAT5 signalling pathway, and improved squab growth. Experiment 2 showed that crop development, crop milk protein synthesis and the protein expression of MetRS and the JAK2/STAT5 signalling pathway were decreased, and squab growth was inhibited by the injection of 1·0 mg/kg body weight REP8839, which was the selected dose for the third experiment. Experiment 3 showed that Met supplementation increased crop development, crop milk protein synthesis and the expression of MetRS and JAK2/STAT5 signalling pathway and rescued squab growth after the injection of REP8839. Moreover, the co-immunoprecipitation results showed that there was an interaction between MetRS and JAK2. Taken together, these findings indicate that MetRS mediates Met-induced crop milk protein synthesis via the JAK2/STAT5 signalling pathway, resulting in improved squab growth in breeding pigeons.

2.
Pharmacol Res ; 206: 107254, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38862069

RESUMEN

Gut damage during carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-HvKP) infection is associated with a death risk. Understanding the mechanisms by which CR-HvKP causes intestinal damage and gut microbiota alteration, and the impact on immunity, is crucial for developing therapeutic strategies. This study investigated if gastrointestinal tract damage and disruption of gut microbiota induced by CR-HvKP infection undermined host immunity and facilitated multi-organ invasion of CR-HvKP; whether the therapeutic value of the rifampicin (RIF) and zidovudine (ZDV) combination was attributed to their ability to repair damages and restore host immunity was determined. A sepsis model was utilized to assess the intestinal pathological changes. Metagenomic analysis was performed to characterize the alteration of gut microbiota. The effects of the RIF and ZDV on suppressing inflammatory responses and improving immune functions and gut microbiota were evaluated by immunopathological and transcriptomic analyses. Rapid colonic damage occurred upon activation of the inflammation signaling pathways during lethal infections. Gut inflammation compromised host innate immunity and led to a significant decrease in probiotics abundance, including Bifidobacterium and Lactobacillus. Treatment with combination drugs significantly attenuated the inflammatory response, up-regulated immune cell differentiation signaling pathways, and promoted the abundance of Bifidobacterium (33.40 %). Consistently, supplementation of Bifidobacterium alone delayed the death in sepsis model. Gut inflammation and disrupted microbiota are key disease features of CR-HvKP infection but can be reversed by the RIF and ZDV drug combination. The finding that these drugs can restore host immunity through multiple mechanisms is novel and deserves further investigation of their clinical application potential.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por Klebsiella , Klebsiella pneumoniae , Rifampin , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/mortalidad , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Rifampin/uso terapéutico , Rifampin/farmacología , Masculino , Zidovudina/uso terapéutico , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Intestinos/microbiología , Intestinos/patología , Intestinos/efectos de los fármacos , Intestinos/inmunología , Ratones Endogámicos C57BL , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Sepsis/inmunología , Sepsis/mortalidad , Ratones , Inmunidad Innata/efectos de los fármacos
3.
Anim Nutr ; 17: 155-164, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38774024

RESUMEN

Fructo-oligosaccharides (FOS) are well-known prebiotics that have the potential to improve sow reproductive performance and increase piglet growth. However, previous studies were observed in sole FOS-supplemented diets of sows or weaned piglets and did not consider the sow-to-piglet transfer effect on the performance and diarrhea rate of weaned piglets. This study explores the effects of dietary FOS supplementation on the reproductive performance of sows, and the effects of FOS supplementation at different stages on the growth performance and diarrhea rate of weaned piglets. A split-plot experimental design was used with sow diet effect in the whole plot and differing piglet diet effect in the subplot. Fifty-two multiparous sows (223.24 ± 14.77 kg) were randomly divided into 2 groups (0 or 0.2% FOS). The experiment lasted from day 85 of gestation to day 21 of lactation. Reproductive performance, glucose tolerance, placental angiogenesis, and intestinal flora of sows were assessed. At weaning, 192 weaned piglets were grouped in 2 × 2 factorial designs, with the main effects of FOS supplemental level of sow diet (0 and 0.2%), and FOS supplemental level of weaned piglet diet (0 and 0.2%), respectively. The growth performance and diarrhea rate of the weaned piglets were analyzed during a 28-d experiment. Maternal dietary supplementation of FOS was shown to reduce the stillbirth and invalid piglet rates (P < 0.05), improve the insulin sensitivity (P < 0.05) and fecal scores (P < 0.05) of sows, increase the abundance of Akkermansia muciniphila (P = 0.016), decrease the abundance of Escherichia coli (P = 0.035), and increase the isovalerate content in feces (P = 0.086). Meanwhile, the placental angiogenesis marker CD31 expression was increased in sows fed FOS diet (P < 0.05). Moreover, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets (P < 0.05) and increased the content of short-chain fatty acids in feces (P < 0.05). Furthermore, only post-weaning dietary FOS supplementation could improve nutrient digestibility of weaned piglets (P < 0.05). Collectively, FOS supplementation in sows can reduce stillbirth rate, perinatal constipation, and insulin resistance, as well as improve placental vascularization barrier. Additionally, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets, but only FOS supplementation in piglets alone at weaning stage could improve their nutrient digestibility.

4.
Haematologica ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546675

RESUMEN

The gut microbiota makes critical contributions to host homeostasis, and its role in the treatment of acute myeloid leukaemia (AML) has attracted attention. We investigated whether the gut microbiome is affected by AML, and whether such changes are associated with cachectic hallmarks. Biological samples and clinical data were collected from 30 antibiotic-free AML patients at diagnosis and matched volunteers (1:1) in a multicenter cross-sectional prospective study. The composition and functional potential of the faecal microbiota were analyzed using shotgun metagenomics. Faecal, blood, and urine metabolomics analyses were performed. AML patients displayed muscle weakness, anorexia, signs of altered gut function, and glycaemic disorders. The composition of the faecal microbiota differed between patients with AML and control subjects, with an increase in oral bacteria. Alterations in bacterial functions and faecal metabolome support an altered redox status in the gut microbiota, which may contribute to the altered redox status observed in patients with AML. Eubacterium eligens, reduced 3-fold in AML patients, was strongly correlated with muscle strength and citrulline, a marker of enterocyte mass and function. Blautia and Parabacteroides, increased in patients with AML, were correlated with anorexia. Several bacterial taxa and metabolites (e.g. Blautia, Prevotella, phenylacetate, and hippurate) previously associated with glycaemic disorders were altered. Our work revealed important perturbations in the gut microbiome of AML patients at diagnosis, which are associated with muscle strength, altered redox status, and anorexia. These findings pave the way for future mechanistic work to explore the function and therapeutic potential of the bacteria identified in this study.

5.
Emerg Microbes Infect ; 13(1): 2306957, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38240375

RESUMEN

The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) poses grave threats to human health. These strains increased dramatically in clinical settings in China in the past few years but not in other parts of the world. Four isogenic K. pneumoniae strains, including classical K. pneumoniae, carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKP) and CR-hvKP, were created and subjected to phenotypic characterization, competition assays, mouse sepsis model and rat colonization tests to investigate the mechanisms underlying the widespread nature of CR-hvKP in China. Acquisition of virulence plasmid led to reduced fitness and abolishment of colonization in the gastrointestinal tract, which may explain why hvKP is not clinically prevalent after its emergence for a long time. However, tigecycline treatment facilitated the colonization of hvKP and CR-hvKP and reduced the population of Lactobacillus spp. in animal gut microbiome. Feeding with Lactobacillus spp. could significantly reduce the colonization of hvKP and CR-hvKP in the animal gastrointestinal tract. Our data implied that the clinical use of tigecycline to treat carbapenem-resistant K. pneumoniae infections facilitated the high spread of CR-hvKP in clinical settings in China and demonstrated that Lactobacillus spp. was a potential candidate for anticolonization strategy against CR-hvKP.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Ratones , Humanos , Ratas , Animales , Tigeciclina/farmacología , Klebsiella pneumoniae/genética , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Carbapenémicos/farmacología , Virulencia , Modelos Animales de Enfermedad , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...