RESUMEN
The spleen constantly clears altered red blood cells (RBCs) from the circulation, tuning the balance between RBC formation (erythropoiesis) and removal. The retention and elimination of RBCs occur predominantly in the open circulation of the spleen, where RBCs must cross submicron-wide inter-endothelial slits (IES). Several experimental and computational studies have illustrated the role of IES in filtrating the biomechanically and morphologically altered RBCs based on a rigid wall assumption. However, these studies also reported that when the size of IES is close to the lower end of clinically observed sizes (less than 0.5 µm), an unphysiologically large pressure difference across the IES is required to drive the passage of normal RBCs, sparking debates on the feasibility of the rigid wall assumption. In this work, We propose two deformable IES models, namely the passive model and the active model, aiming to explore the impact of the deformability of IES on the filtration function of the spleen. In the passive model, we implement the worm-like string model to depict the IES's deformation as it interacts with blood plasma and allows RBC to traverse. In contrast, the active model involved regulating the IES deformation based on the local pressure surrounding the slit. To demonstrate the validity of the deformable model, we simulate the filtration of RBCs with varied size and stiffness by IES under three scenarios: (1) a single RBC traversing a single slit; (2) a suspension of RBCs traversing an array of slits, mimicking in vitro spleen-on-a-chip experiments; (3) RBC suspension passing through the 3D spleen filtration unit known as'the splenon'. Our simulation results of RBC passing through a single slit show that the deformable IES model offers more accurate predictions of the critical cell surface area to volume ratio that dictate the removal of aged RBCs from circulation compared to prior rigid-wall models. Our biophysical models of the spleen-on-a-chip indicate a hierarchy of filtration function stringency: rigid model > passive model > active model, providing a possible explanation of the filtration function of IES. We also illustrate that the biophysical model of 'the splenon' enables us to replicate the ex vivo experiments involving spleen filtration of malaria-infected RBCs. Taken together, our simulation findings indicate that the deformable IES model could serve as a mesoscopic representation of spleen filtration function closer to physiological reality, addressing questions beyond the scope of current experimental and computational models and enhancing our understanding of the fundamental flow dynamics and mechanical clearance processes within in the human spleen.
RESUMEN
Red blood cell (RBC) aging manifests through progressive changes in cell morphology, rigidity, and expression of membrane proteins. To maintain the quality of circulating blood, splenic macrophages detect the biochemical signals and biophysical changes of RBCs and selectively clear them through erythrophagocytosis. In sickle cell disease (SCD), RBCs display alterations affecting their interaction with macrophages, leading to aberrant phagocytosis that may cause life-threatening spleen sequestration crises. To illuminate the mechanistic control of RBC engulfment by macrophages in SCD, we integrate a system biology model of RBC-macrophage signaling interactions with a biophysical model of macrophage engulfment, as well as in vitro phagocytosis experiments using the spleen-on-a-chip technology. Our modeling framework accurately predicts the phagocytosis dynamics of RBCs under different disease conditions, reveals patterns distinguishing normal and sickle RBCs, and identifies molecular targets including Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP1) and cluster of differentiation 47 (CD47)/signal regulatory protein α (SIRPα) as therapeutic targets to facilitate the controlled clearance of sickle RBCs in the spleen.
RESUMEN
Being the largest lymphatic organ in the body, the spleen also constantly controls the quality of red blood cells (RBCs) in circulation through its two major filtration components, namely interendothelial slits (IES) and red pulp macrophages. In contrast to the extensive studies in understanding the filtration function of IES, fewer works investigate how the splenic macrophages retain the aged and diseased RBCs, i.e., RBCs in sickle cell disease (SCD). Herein, we perform a computational study informed by companion experiments to quantify the dynamics of RBCs captured and retained by the macrophages. We first calibrate the parameters in the computational model based on microfluidic experimental measurements for sickle RBCs under normoxia and hypoxia, as those parameters are not available in the literature. Next, we quantify the impact of key factors expected to dictate the RBC retention by the macrophages in the spleen, namely, blood flow conditions, RBC aggregation, hematocrit, RBC morphology, and oxygen levels. Our simulation results show that hypoxic conditions could enhance the adhesion between the sickle RBCs and macrophages. This, in turn, increases the retention of RBCs by as much as four-fold, which could be a possible cause of RBC congestion in the spleen of patients with SCD. Our study on the impact of RBC aggregation illustrates a 'clustering effect', where multiple RBCs in one aggregate can make contact and adhere to the macrophages, leading to a higher retention rate than that resulting from RBC-macrophage pair interactions. Our simulations of sickle RBCs flowing past macrophages for a range of blood flow velocities indicate that the increased blood velocity could quickly attenuate the function of the red pulp macrophages on detaining aged or diseased RBCs, thereby providing a possible rationale for the slow blood flow in the open circulation of the spleen. Furthermore, we quantify the impact of RBC morphology on their tendency to be retained by the macrophages. We find that the sickle and granular-shaped RBCs are more likely to be filtered by macrophages in the spleen. This finding is consistent with the observation of low percentages of these two forms of sickle RBCs in the blood smear of SCD patients. Taken together, our experimental and simulation results aid in our quantitative understanding of the function of splenic macrophages in retaining the diseased RBCs and provide an opportunity to combine such knowledge with the current knowledge of the interaction between IES and traversing RBCs to apprehend the complete filtration function of the spleen in SCD.
Asunto(s)
Anemia de Células Falciformes , Enfermedades Hematológicas , Humanos , Anciano , Eritrocitos , Bazo/fisiología , MacrófagosRESUMEN
Background: The incidence of critical leptospirosis manifested as massive pulmonary hemorrhage has been significantly reduced, which has been rarely reported in recent years, while the mortality rate is extremely high once it occurs. Case presentation: A 54-year-old man with no HIV infection was admitted to the local county hospital due to high-grade continuous fever lasting four days (38.5-40.5C), upper limb and shoulder-back muscle pain, and general fatigue. The chest CT (Aug 26, 2021) showed "multiple patchy, cloudy, and fuzzy shadows in both lungs, mainly under the pleura of the upper and lower lobes of both lungs; some lymph nodes in the mediastinum are enlarged". Despite being diagnosed with "common community-acquired pneumonia" and starting injectable levofloxacin, the symptoms worsened, and massive hemoptysis occurred. However, after being transferred to our hospital, the patient was diagnosed with the "pulmonary hemorrhage type of leptospirosis" through comprehensive dynamic analysis. The patient recovered very well after undergoing "penicillin 3MIU q6h" alone for two weeks to fight the infection. Conclusions: Leptospirosis has a high mortality rate when it becomes critical or severe. Diagnosis typically relies on factors such as epidemiology, clinical symptoms, and pathogenetic testing. Metagenomic next-generation sequencing (mNGS) is more effective in sensitivity and speed than traditional detection methods, making it an excellent option for diagnosing challenging and severe infections in emergencies. Additionally, when experiencing sudden coughing up of blood, it's important to consider the possibility of pulmonary hemorrhage as a type of leptospirosis.
RESUMEN
We sought to study the role of circulating cellular clusters (CCC) -such as circulating leukocyte clusters (CLCs), platelet-leukocyte aggregates (PLA), and platelet-erythrocyte aggregates (PEA)- in the immunothrombotic state induced by COVID-19. Forty-six blood samples from 37 COVID-19 patients and 12 samples from healthy controls were analyzed with imaging flow cytometry. Patients with COVID-19 had significantly higher levels of PEAs (p value<0.001) and PLAs (p value = 0.015) compared to healthy controls. Among COVID-19 patients, CLCs were correlated with thrombotic complications (p value = 0.016), vasopressor need (p value = 0.033), acute kidney injury (p value = 0.027), and pneumonia (p value = 0.036), whereas PEAs were associated with positive bacterial cultures (p value = 0.033). In predictive in silico simulations, CLCs were more likely to result in microcirculatory obstruction at low flow velocities (≤1 mm/s) and at higher branching angles. Further studies on the cellular component of hyperinflammatory prothrombotic states may lead to the identification of novel biomarkers and drug targets for inflammation-related thrombosis.
RESUMEN
Being the largest lymphatic organ in the body, the spleen also constantly controls the quality of red blood cells (RBCs) in circulation through its two major filtration components, namely interendothelial slits (IES) and red pulp macrophages. In contrast to the extensive studies in understanding the filtration function of IES, there are relatively fewer works on investigating how the splenic macrophages retain the aged and diseased RBCs, i.e., RBCs in sickle cell disease (SCD). Herein, we perform a computational study informed by companion experiments to quantify the dynamics of RBCs captured and retained by the macrophages. We first calibrate the parameters in the computational model based on microfluidic experimental measurements for sickle RBCs under normoxia and hypoxia, as those parameters are not available in the literature. Next, we quantify the impact of a set of key factors that are expected to dictate the RBC retention by the macrophages in the spleen, namely, blood flow conditions, RBC aggregation, hematocrit, RBC morphology, and oxygen levels. Our simulation results show that hypoxic conditions could enhance the adhesion between the sickle RBCs and macrophages. This, in turn, increases the retention of RBCs by as much as five-fold, which could be a possible cause of RBC congestion in the spleen of patients with SCD. Our study on the impact of RBC aggregation illustrates a 'clustering effect', where multiple RBCs in one aggregate can make contact and adhere to the macrophages, leading to a higher retention rate than that resulting from RBC-macrophage pair interactions. Our simulations of sickle RBCs flowing past macrophages for a range of blood flow velocities indicate that the increased blood velocity could quickly attenuate the function of the red pulp macrophages on detaining aged or diseased RBCs, thereby providing a possible rationale for the slow blood flow in the open circulation of the spleen. Furthermore, we quantify the impact of RBC morphology on their tendency to be retained by the macrophages. We find that the sickle and granular-shaped RBCs are more likely to be filtered by macrophages in the spleen. This finding is consistent with the observation of low percentages of these two forms of sickle RBCs in the blood smear of SCD patients. Taken together, our experimental and simulation results aid in our quantitative understanding of the function of splenic macrophages in retaining the diseased RBCs and provide an opportunity to combine such knowledge with the current knowledge of the interaction between IES and traversing RBCs to apprehend the complete filtration function of the spleen in SCD.
RESUMEN
Erythrophagocytosis occurring in the spleen is a critical process for removing senescent and diseased red blood cells (RBCs) from the microcirculation. Although some progress has been made in understanding how the biological signaling pathways mediate the phagocytic processes, the role of the biophysical interaction between RBCs and macrophages, particularly under pathological conditions such as sickle cell disease, has not been adequately studied. Here, we combine computational simulations with microfluidic experiments to quantify RBC-macrophage adhesion dynamics under flow conditions comparable to those in the red pulp of the spleen. We also investigate the RBC-macrophage interaction under normoxic and hypoxic conditions. First, we calibrate key model parameters in the adhesion model using microfluidic experiments for normal and sickle RBCs under normoxia and hypoxia. We then study the adhesion dynamics between the RBC and the macrophage. Our simulation illustrates three typical adhesion states, each characterized by a distinct dynamic motion of the RBCs, namely firm adhesion, flipping adhesion, and no adhesion (either due to no contact with macrophages or detachment from the macrophages). We also track the number of bonds formed when RBCs and macrophages are in contact, as well as the contact area between the two interacting cells, providing mechanistic explanations for the three adhesion states observed in the simulations and microfluidic experiments. Furthermore, we quantify, for the first time to our knowledge, the adhesive forces between RBCs (normal and sickle) and macrophages under different oxygenated conditions. Our results show that the adhesive forces between normal cells and macrophages under normoxia are in the range of 33-58 pN and 53-92 pN for sickle cells under normoxia and 155-170 pN for sickle cells under hypoxia. Taken together, our microfluidic and simulation results improve our understanding of the biophysical interaction between RBCs and macrophages in sickle cell disease and provide a solid foundation for investigating the filtration function of the splenic macrophages under physiological and pathological conditions.
Asunto(s)
Anemia de Células Falciformes , Humanos , Eritrocitos , Eritrocitos Anormales , Hipoxia/metabolismo , Hipoxia/patología , Macrófagos , Adhesión CelularRESUMEN
Domestic ducks are raised for meat, eggs and feather down, and almost all varieties are descended from the Mallard (Anas platyrhynchos). Here, we report chromosome-level high-quality genome assemblies for meat and laying duck breeds, and the Mallard. Our new genomic databases contain annotations for thousands of new protein-coding genes and recover a major percentage of the presumed "missing genes" in birds. We obtain the entire genomic sequences for the C-type lectin (CTL) family members that regulate eggshell biomineralization. Our population and comparative genomics analyses provide more than 36 million sequence variants between duck populations. Furthermore, a mutant cell line allows confirmation of the predicted anti-adipogenic function of NR2F2 in the duck, and uncovered mutations specific to Pekin duck that potentially affect adipose deposition. Our study provides insights into avian evolution and the genetics of oviparity, and will be a rich resource for the future genetic improvement of commercial traits in the duck.
Asunto(s)
Adipogénesis/genética , Proteínas Aviares/genética , Factor de Transcripción COUP II/genética , Patos/genética , Genoma , Lectinas Tipo C/genética , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Proteínas Aviares/clasificación , Proteínas Aviares/metabolismo , Cruzamiento , Factor de Transcripción COUP II/metabolismo , Domesticación , Cáscara de Huevo/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Lectinas Tipo C/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Anotación de Secuencia Molecular , Mutación , Cigoto/metabolismoRESUMEN
In tumor metastasis, the margination and adhesion of tumor cells are two critical and closely related steps, which may determine the destination where the tumor cells extravasate to. We performed a direct three-dimensional simulation on the behaviors of the tumor cells in a real microvascular network, by a hybrid method of the smoothed dissipative particle dynamics and immersed boundary method (SDPD-IBM). The tumor cells are found to adhere at the microvascular bifurcations more frequently, and there is a positive correlation between the adhesion of the tumor cells and the wall-directed force from the surrounding red blood cells (RBCs). The larger the wall-directed force is, the closer the tumor cells are marginated towards the wall, and the higher the probability of adhesion behavior happen is. A relatively low or high hematocrit can help to prevent the adhesion of tumor cells, and similarly, increasing the shear rate of blood flow can serve the same purpose. These results suggest that the tumor cells may be more likely to extravasate at the microvascular bifurcations if the blood flow is slow and the hematocrit is moderate.
Asunto(s)
Biología Computacional/métodos , Microcirculación , Modelos Cardiovasculares , Neoplasias/genética , Neoplasias/metabolismo , Animales , Adhesión Celular , Simulación por Computador , Elasticidad , Eritrocitos/citología , Hematócrito , Hemodinámica , Humanos , Metástasis de la Neoplasia , Ratas , Estrés MecánicoRESUMEN
Numerically reproducing the process of thrombus formation is highly desired for understanding its mechanism but still remains challenging due to the polydisperse feature of blood components and their multiple biochemical or biomechanical behaviors involved. We numerically implemented a simplified version of the process from the perspective of biomechanics, using a mesoscale particle-based method, smoothed dissipative particle dynamics-immersed boundary method. This version covers the adhesion and aggregation of platelets (PLTs), the deformation and aggregation of red blood cells (RBCs), and the interaction between PLTs and RBCs, as well as the blockage of microvessels. Four critical factors that can affect thrombus formation were investigated: the velocity of blood flow, the adhesive ability of PLTs, the interaction strength between PLTs and RBCs, and the deformability of RBCs. Increasing the velocity of blood flow was found to be the most effective way to reduce the microvessel blockage, and reducing the adhesive ability of PLTs is also a direct and efficient way. However, decreasing the interaction strength between PLTs and RBCs sometimes does not alleviate thrombus formation, and similarly, increasing the deformability of RBCs does not have a significant improvement for the severely blocked microvessel. These results imply that maintaining high-rate blood flow plays a crucial role in the prevention and treatment of thrombosis, which is even more effective than antiplatelet or anticoagulant drugs. The drugs or treatments concentrating on reducing the PLT-RBC interaction or softening the RBCs may not have a significant effect on the thrombosis.
Asunto(s)
Fenómenos Mecánicos , Modelos Biológicos , Trombosis/patología , Fenómenos Biomecánicos , Agregación Eritrocitaria , Hemodinámica , Adhesividad Plaquetaria , Agregación Plaquetaria , Trombosis/fisiopatologíaRESUMEN
Nonproportional RBC distribution is an important characteristic in microvascular networks, which can result in heterogeneity of oxygen supply that may cause ischemic death in severe cases. In this paper, we perform three-dimensional numerical simulations of a large number of RBCs in a microvascular network, by using a hybrid method of smoothed dissipative particle dynamic and immersed boundary method. The distribution of multiple RBCs in a T-bifurcation is first simulated as a validation study, and a reasonable agreement is observed both qualitatively and quantitatively on the RBC flux between our results and the previously published numerical and empirical results. Next, the distribution of a large number of RBCs in a microvascular network is investigated, including the effects of cell deformability, aggregation and tube hematocrit. The simulation results indicate that decreased deformability and increased aggregation strength have a similar effect on the RBC distribution: the large RBC flux becomes larger, but the small becomes smaller. A high hematocrit also causes a similar phenomenon that the RBCs are more apt to flow into a high RBC-flux branch, because they are arranged compactly into a rouleaux and difficultly broken up at a high hematocrit. These results imply that lower cell deformability, stronger aggregation or higher tube hematocrit would be conducive to the phase separation of hematocrit and plasma skimming processes in microcirculation.