Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
J Environ Sci (China) ; 147: 62-73, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003077

RESUMEN

Non-ferrous metal smelting poses significant risks to public health. Specifically, the copper smelting process releases arsenic, a semi-volatile metalloid, which poses an emerging exposure risk to both workers and nearby residents. To comprehensively understand the internal exposure risks of metal(loid)s from copper smelting, we explored eighteen metal(loid)s and arsenic metabolites in the urine of both occupational and non-occupational populations using inductively coupled plasma mass spectrometry with high-performance liquid chromatography and compared their health risks. Results showed that zinc and copper (485.38 and 14.00 µg/L), and arsenic, lead, cadmium, vanadium, tin and antimony (46.80, 6.82, 2.17, 0.40, 0.44 and 0.23 µg/L, respectively) in workers (n=179) were significantly higher compared to controls (n=168), while Zinc, tin and antimony (412.10, 0.51 and 0.15 µg/L, respectively) of residents were significantly higher than controls. Additionally, workers had a higher monomethyl arsenic percentage (MMA%), showing lower arsenic methylation capacity. Source appointment analysis identified arsenic, lead, cadmium, antimony, tin and thallium as co-exposure metal(loid)s from copper smelting, positively relating to the age of workers. The hazard index (HI) of workers exceeded 1.0, while residents and control were approximately at 1.0. Besides, all three populations had accumulated cancer risks exceeding 1.0 × 10-4, and arsenite (AsIII) was the main contributor to the variation of workers and residents. Furthermore, residents living closer to the smelting plant had higher health risks. This study reveals arsenic exposure metabolites and multiple metals as emerging contaminants for copper smelting exposure populations, providing valuable insights for pollution control in non-ferrous metal smelting.


Asunto(s)
Metalurgia , Exposición Profesional , Humanos , Exposición Profesional/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Metales/orina , Metales/análisis , Medición de Riesgo , Arsénico/análisis , Monitoreo del Ambiente , Adulto , Contaminantes Ambientales/análisis , Persona de Mediana Edad
2.
J Environ Sci (China) ; 151: 310-330, 2025 May.
Artículo en Inglés | MEDLINE | ID: mdl-39481942

RESUMEN

Brown carbon (BrC) has attracted widespread attention because of its strong absorption of solar radiation in the ultraviolet-visible wavelength range, which causes adverse impacts on human health. Originally, BrC was a physically defined class of substances. However, current research has gradually shifted towards the identification of its chemical groups, because its light-absorbing capability, chemical properties and health effects mainly depend on the chemical composition of its chromophores. Therefore, this review mainly focuses on the chemical understanding of BrC based on chromophores, and the secondary formation mechanism of chromophores, photosensitized reactions, and human health effects of BrC were detailly summarized. Firstly, BrC chromophores are divided into five categories: nitrogen-heterocycles, nitrogen-chain, aromatic species, oligomers and sulfur-containing organic compounds. Different chromophore precursor species exhibit variations, and their formation mechanisms are also distinct. Secondly, BrC can trigger the production of secondary organic aerosol (SOA) precursors or cause SOA growth because BrC is an important component of light-absorbing particles formed during incomplete combustion of biomass and fossil fuels, potentially exerting adverse effects on human health. Finally, developing sufficiently separated methods for BrC and refining algorithms and machine learning can lead to a more effective understanding of the chemical composition of chromophores, thus enabling better evaluation of the atmospheric effects and health impacts of BrC. In all, this review provides new insights into the categories of BrC chromophores and new advance in secondary formation mechanisms, photosensitized reactions, and human health effects on the basis of chemical structures.


Asunto(s)
Carbono , Humanos , Carbono/química , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/toxicidad , Aerosoles
3.
J Environ Sci (China) ; 149: 688-698, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181679

RESUMEN

Coking industry is a potential source of heavy metals (HMs) pollution. However, its impacts to the groundwater of surrounding residential areas have not been well understood. This study investigated the pollution characteristics and health risks of HMs in groundwater nearby a typical coking plant. Nine HMs including Fe, Zn, Mo, As, Cu, Ni, Cr, Pb and Cd were analyzed. The average concentration of total HMs was higher in the nearby area (244.27 µg/L) than that of remote area away the coking plant (89.15 µg/L). The spatial distribution of pollution indices including heavy metal pollution index (HPI), Nemerow index (NI) and contamination degree (CD), all demonstrated higher values at the nearby residential areas, suggesting coking activity could significantly impact the HMs distribution characteristics. Four sources of HMs were identified by Positive Matrix Factorization (PMF) model, which indicated coal washing and coking emission were the dominant sources, accounted for 40.4%, and 31.0%, respectively. Oral ingestion was found to be the dominant exposure pathway with higher exposure dose to children than adults. Hazard quotient (HQ) values were below 1.0, suggesting negligible non-carcinogenic health risks, while potential carcinogenic risks were from Pb and Ni with cancer risk (CR) values > 10-6. Monte Carlo simulation matched well with the calculated results with HMs concentrations to be the most sensitive parameters. This study provides insights into understanding how the industrial coking activities can impact the HMs pollution characteristics in groundwater, thus facilitating the implement of HMs regulation in coking industries.


Asunto(s)
Coque , Monitoreo del Ambiente , Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Agua Subterránea/química , Agua Subterránea/análisis , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Humanos
4.
Huan Jing Ke Xue ; 45(10): 6129-6138, 2024 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-39455156

RESUMEN

As an emerging niche colonized by microorganisms, microplastics may selectively enrich pathogens, resulting in crucial ecological risks and potential threats to public health in aquatic environments. However, the enrichment characteristics and ecological risks of pathogens on different microplastic biofilms remain unclear. In this study, 16S rRNA high-throughput sequencing technology was used to investigate the differences in the bacterial community structure, occurrence characteristics of pathogens, and prediction of ecological risks on five typical microplastic biofilms of polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) through a field in-situ incubation experiment. The results showed that after 28 d of in situ incubation, the macroscopic biofilms were formed on the surface of all microplastics, and the diversity and richness of the bacterial community on all microplastic biofilms were higher than in the surrounding water, indicating that the microorganisms in the surrounding water were selectively enriched on microplastics. Each type of microplastic biofilm had formed a unique bacterial community structure; in particular, PVC microplastics were more inclined to selectively enrich the members of Proteobacteria. A total of 47 human pathogens were identified using the HPB database, including six antibiotic resistance pathogens belonging to the lists of critical priority control. The number and total abundance of human pathogens detected on microplastic biofilm were higher than those in the surrounding water, and the dominant pathogens such as Bartonella, Burkholderia, and Brucella were selectively enriched on microplastic biofilms. Microbial phenotype prediction results based on BugBase showed that three functional phenotypes including biofilm formation, mobile element contained, and potentially pathogenic on microplastic biofilms had significantly increased by 2.38%-5.57%, 0.82%-7.13%, and 3.04%-8.30%, respectively, which were mainly contributed by α-Proteobacteria and γ-Proteobacteria. These results not only indicate that the selective enrichment of opportunistic pathogens on microplastic biofilms may lead to the increased risk of pathogenicity and antibiotic resistance co-spread but also provide reference for the accurate assessment of ecological risks caused by microplastic pollution in aquatic environments.


Asunto(s)
Bacterias , Biopelículas , Microplásticos , Microplásticos/toxicidad , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , ARN Ribosómico 16S/genética , Monitoreo del Ambiente/métodos , Microbiología del Agua , Proteobacteria/aislamiento & purificación , Ecosistema
6.
Environ Sci Technol ; 58(40): 17937-17947, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39250882

RESUMEN

Bacterial antibiotic resistance has recently attracted increasing amounts of attention. Here, an artificially antibiotic-resistant bacterial community (ARBC) combined with five different constructed antibiotic-resistant bacteria (ARB) with single antibiotic resistance, namely, kanamycin (KAN), tetracycline (TET), cefotaxime (CTX), polymyxin B (PB), or gentamicin (GEM), was studied for the stress response to photocatalysis. With photocatalytic inactivation, the transfer and diffusion of antibiotic resistance genes (ARGs) in the ARBC decreased, and fewer multidrug-resistant bacteria (MDRB) emerged in aquatic environments. After several days of photocatalytic inactivation or Luria broth cultivation, >90% ARB were transformed to antibiotic-susceptible bacteria by discarding ARGs. Bacteria with double antibiotic resistance were the dominant species (99%) of residual ARB. The changes in ARG abundance varied, decreasing for the GEM and TET resistance genes and increasing for the KAN resistance genes. The change in the antibiotic resistance level was consistent with the change in ARG abundance. Correspondingly, point mutations occurred for the KAN, CTX and PB resistance genes after photocatalytic inactivation, which might be the reason why these genes persisted longer in the studied ARBC. In summary, photocatalytic inactivation could reduce the abundance of some ARGs and inhibit the emergence of MDRB as well as block ARG transfer in the bacterial community in aquatic environments. This work highlights the advantages of long-term photocatalytic inactivation for controlling antibiotic resistance and facilitates a better understanding of bacterial communities in real aquatic environments.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Catálisis
7.
Int J Biol Macromol ; 279(Pt 4): 135478, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39250988

RESUMEN

Fluorescent probe with aggregation-induced emission (AIE) property has been widely used because of the advantages of high sensitivity, good selectivity and non-destructive testing. The development of fluorescent probe with good biocompatibility, photostability and biodegradability is of great significance in biomedicine and environmental detection. Herein, a novel type of fluorophore CS-TPE for detection of Fe3+ and bacteria was prepared by the Schiff base reaction of chitosan (CS) and 4-(1,2,2-triphenylethenyl) benzaldehyde (TPE-CHO). The fluorescence response mechanism of CS-TPE system was investigated by various characterization techniques. CS-TPE had an obvious AIE behavior with strong blue-green emissions at 473 nm and reaches the highest photoluminescence (PL) emission in 90 % H2O/ethanol mixtures. CS-TPE fluorescent probe exhibited sensitive quenching response to Fe3+, which can be used as a biosensor for detecting the concentration of Fe3+ with short response time (5 min), low detection limit (0.998 µM) and wide detection range (10-300 µM). Meanwhile, CS-TPE exhibited good antibacterial performance for S. aureus and E. coli. It is expected to realize the real-time fluorescence monitoring of metal ion detection and antibacterial process.


Asunto(s)
Quitosano , Escherichia coli , Colorantes Fluorescentes , Hierro , Colorantes Fluorescentes/química , Quitosano/química , Hierro/análisis , Hierro/química , Staphylococcus aureus , Bases de Schiff/química , Espectrometría de Fluorescencia/métodos , Antibacterianos/farmacología , Antibacterianos/análisis , Antibacterianos/química , Técnicas Biosensibles/métodos
8.
Environ Pollut ; 361: 124881, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39233270

RESUMEN

In residential environment, NO2 is an important air pollutant. Yet, the dynamics of indoor NO2 and source contributions to human exposure are not well understood. Here, we conducted a continuous NO2 measurement in and out of eight households in Guangzhou, China. Paired high time-resolution NO2 data sets indoors (kitchen, living room) and outdoors (balcony) were obtained with NO2 monitors. We summarized the indoor and outdoor NO2 levels, identified temporal variation patterns, analyzed indoor-outdoor relationships, and quantified source contributions to indoor NO2 exposure. Indoor NO2 were overall higher than outdoor NO2, and in most cases, the highest NO2 levels were observed in the kitchen. NO2 in the kitchen was characterized by multiple spikes associated with use of gas stoves, while NO2 in the living room was also elevated but the peaks were generally smaller. The indoor-outdoor correlations were stronger in winter than in summer, and were stronger in nighttime than daytime. The sources contributing to indoor NO2 were separated with a conceptual model. Overall, the outdoor NO2 source contributed 73%-76% of the NO2 in the kitchen, and 76%-85% in the living room. The source pattern was quite different: outdoor NO2 sources were present indoors all the time; by contrast, indoor NO2 sources were present sporadically but with a very high contribution. This has important implication to the exposure assessment that indoor NO2 sources lead to short-term high exposure, and deserves attention regarding acute health effects.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Vivienda , Dióxido de Nitrógeno , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Humanos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Monitoreo del Ambiente/métodos , China , Exposición a Riesgos Ambientales/estadística & datos numéricos , Estaciones del Año
9.
Fish Shellfish Immunol ; 154: 109872, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244075

RESUMEN

Scylla paramamosain, an economically significant crab, is widely cultivated worldwide. In recent years, S. paramamosain has faced a serious threat from viral diseases due to the expansion of culture scale and increased culture density. Among these, mud crab dicistrovirus-1 (MCDV-1) stands out as highly pathogenic, presenting substantial challenges to the healthy development of mud crab aquaculture. Therefore, a comprehensive understanding of the mud crab immune response to MCDV-1 infection is imperative for devising effective disease prevention strategies. In this study, transcriptomic analyses were conducted on the hepatopancreas of mud crabs infected with MCDV-1. The findings revealed a total of 5139 differentially expressed genes (DEGs) between healthy and MCDV-1 infected mud crabs, including 3327 upregulated and 1812 downregulated DEGs. Further analysis showed that mud crabs resist MCDV-1 infection by activating humoral immune-related pathways, including the MAPK signaling pathway, MAPK signaling pathway-fly, and Toll and Imd signaling pathway. In contrast, MCDV-1 infection triggers host metabolic disorders. Several immune-related vitamin metabolism pathways (ascorbate and aldarate metabolism, retinol metabolism, and nicotinate and nicotinamide metabolism) were significantly inhibited, which may create favorable conditions for the virus's self-replication. Notably, endocytosis emerged as significantly upregulated both in GO terms and KEGG pathways, with several viral endocytosis-related pathways showing significant activation. PPI network analysis identified 9 hub genes associated with viral endocytosis within the endocytosis. Subsequent GeneMANIA analysis confirmed the association of these hub genes with viral endocytosis. Both transcriptome data and qPCR analysis revealed a significant upregulation of these hub genes post MCDV-1 infection, suggesting MCDV-1 may use viral endocytosis to enter cells and facilitate replication. This study represents the first comprehensive report on the transcriptomic profile of mud crab hepatopancreas response to MCDV-1 infection. Future investigations should focus on elucidating the mechanisms through which MCDV-1 enters cells via endocytosis, as this may holds critical implications for the development of vaccine targets.

10.
J Hazard Mater ; 480: 135901, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39305601

RESUMEN

Microplastics (MPs) has been concerned as emerging vectors for spreading antibiotic resistance and pathogenicity in aquatic environments, but the role of biodegradable MPs remains largely unknown. Herein, field in-situ incubation method combined with metagenomic sequencing were employed to reveal the dispersal characteristics of microbial community, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and virulence factors (VFs) enriched by MPs biofilms. Results showed that planktonic microbes were more prone to enrich on biodegradable MPs (i.e., polyhydroxyalkanoate and polylactic acid) than non-biodegradable MPs (i.e., polystyrene, polypropylene and polyethylene). Distinctive microbial communities were assembled on biodegradable MPs, and the abundances of ARGs, MGEs, and VFs on biofilms of biodegradable MPs were much higher than that of non-biodegradable MPs. Notably, network analysis showed that the biodegradable MPs selectively enriched pathogens carrying ARGs, VFs and MGEs concurrently, suggesting a strong potential risks of co-spreading antibiotic resistance and pathogenicity through horizontal gene transfer. According to WHO priority list of Antibiotic Resistant Pathogens (ARPs) and ARGs health risk assessment framework, the highest abundances of Priority 1 ARPs and Rank I risk ARGs were found on polylactic acid and polyhydroxyalkanoate, respectively. These findings elucidate the unique and critical role of biodegradable MPs for selective enrichment of high-risk ARGs and priority pathogens in freshwater environments.

11.
Ann Med ; 56(1): 2381085, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39099020

RESUMEN

BACKGROUND: Rat models are valuable tools to study the lung microbiota in diseases. Yet the impacts of different lung parts, young and mature adult stages, and the different batches of the same conditions on the healthy rat lung microbiome have not been investigated. METHODS: The rat lung microbiome was analyzed to clarify the lung part-dependent and age-dependent differences and to evaluate the effects of several 'batch environmental factors' on normal rats, after eliminating potential contamination. RESULTS: The results showed that the contamination could be identified and excluded. The lung microbiome from left and right lung parts was very similar so one representative part could be used in the microbiome study. There were significantly different lung microbial communities between the young and mature adult groups, and also between the different feeding batches groups of the same repetitive feeding conditions, but a common lung microbiota characterized by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria as the most dominant phyla were present in all adult rats. It indicated that the experiment under the same condition of the same rats batch was needed to compare the difference in the lung microbiota and repeated experiments were necessary to confirm the results. CONCLUSION: These data represented that the lung bacterial communities were dynamic and rapidly susceptible to environmental influence, clustered strongly by age or different feeding batches but similar in the different lung tissue parts. This study improved the basic understanding of the potential effects on the lung microbiome of healthy rats.


Asunto(s)
Pulmón , Microbiota , Animales , Pulmón/microbiología , Ratas/microbiología , Masculino , Factores de Edad , Ratas Sprague-Dawley , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética
12.
Environ Int ; 190: 108927, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39121826

RESUMEN

In the context of pandemic viruses and pathogenic bacteria, triclosan (TCS), as a typical antibacterial agent, is widely used around the world. However, the health risks from TCS increase with exposure, and it is widespread in environmental and human samples. Notably, environmental transformation and human metabolism could induce potentially undesirable risks to humans, rather than simple decontamination or detoxification. This review summarizes the environmental and human exposure to TCS covering from 2004 to 2023. Particularly, health impacts from the environmental and metabolic transformation of TCS are emphasized. Environmental transformations aimed at decontamination are recognized to form carcinogenic products such as dioxins, and ultraviolet light and excessive active chlorine can promote the formation of these dioxin congeners, potentially threatening environmental and human health. Although TCS can be rapidly metabolized for detoxification, these processes can induce the formation of lipophilic ether metabolic analogs via cytochrome P450 catalysis, causing possible adverse cross-talk reactions in human metabolic disorders. Accordingly, TCS may be more harmful in environmental transformation and human metabolism. In particular, TCS can stimulate the transmission of antibiotic resistance even at trace levels, threatening public health. Considering these accruing epidemiological and toxicological studies indicating the multiple adverse health outcomes of TCS, we call on environmental toxicologists to pay more attention to the toxicity evolution of TCS during environmental transformation and human metabolism.


Asunto(s)
Triclosán , Triclosán/metabolismo , Triclosán/toxicidad , Humanos , Exposición a Riesgos Ambientales , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Antiinfecciosos Locales/metabolismo , Antiinfecciosos Locales/toxicidad , Pandemias
13.
Fundam Res ; 4(4): 941-950, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39156574

RESUMEN

Neural network pruning is a popular approach to reducing the computational complexity of deep neural networks. In recent years, as growing evidence shows that conventional network pruning methods employ inappropriate proxy metrics, and as new types of hardware become increasingly available, hardware-aware network pruning that incorporates hardware characteristics in the loop of network pruning has gained growing attention. Both network accuracy and hardware efficiency (latency, memory consumption, etc.) are critical objectives to the success of network pruning, but the conflict between the multiple objectives makes it impossible to find a single optimal solution. Previous studies mostly convert the hardware-aware network pruning to optimization problems with a single objective. In this paper, we propose to solve the hardware-aware network pruning problem with Multi-Objective Evolutionary Algorithms (MOEAs). Specifically, we formulate the problem as a multi-objective optimization problem, and propose a novel memetic MOEA, namely HAMP, that combines an efficient portfolio-based selection and a surrogate-assisted local search, to solve it. Empirical studies demonstrate the potential of MOEAs in providing simultaneously a set of alternative solutions and the superiority of HAMP compared to the state-of-the-art hardware-aware network pruning method.

14.
Cell Death Discov ; 10(1): 314, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972937

RESUMEN

Kidney fibrosis is considered to be the ultimate aggregation pathway of chronic kidney disease (CKD), but its underlying mechanism remains elusive. Protein kinase C-delta (PKC-δ) plays critical roles in the control of growth, differentiation, and apoptosis. In this study, we found that PKC-δ was highly upregulated in human biopsy samples and mouse kidneys with fibrosis. Rottlerin, a PKC-δ inhibitor, alleviated unilateral ureteral ligation (UUO)-induced kidney fibrosis, inflammation, VDAC1 expression, and cGAS-STING signaling pathway activation. Adeno-associated virus 9 (AAV9)-mediated VDAC1 silencing or VBIT-12, a VDAC1 inhibitor, attenuated renal injury, inflammation, and activation of cGAS-STING signaling pathway in UUO mouse model. Genetic and pharmacologic inhibition of STING relieved renal fibrosis and inflammation in UUO mice. In vitro, hypoxia resulted in PKC-δ phosphorylation, VDAC1 oligomerization, and activation of cGAS-STING signaling pathway in HK-2 cells. Inhibition of PKC-δ, VDAC1 or STING alleviated hypoxia-induced fibrotic and inflammatory responses in HK-2 cells, respectively. Mechanistically, PKC-δ activation induced mitochondrial membrane VDAC1 oligomerization via direct binding VDAC1, followed by the mitochondrial DNA (mtDNA) release into the cytoplasm, and subsequent activated cGAS-STING signaling pathway, which contributed to the inflammation leading to fibrosis. In conclusion, this study has indicated for the first time that PKC-δ is an important regulator in kidney fibrosis by promoting cGAS-STING signaling pathway which mediated by VDAC1. PKC-δ may be useful for treating renal fibrosis and subsequent CKD.

15.
Sci Total Environ ; 948: 174924, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047835

RESUMEN

Volatile organic compounds (VOCs) are widespread harmful atmospheric pollutants, which have long been concerned and elucidated to be one of the risks of acute and chronic diseases for human, such as leukemia and cancer. Although numerous scientific studies have documented the potential adverse outcomes caused by VOC exposure, the mechanisms which biological response pathways of these VOC disruption remain poorly understood. Therefore, the identification of biochemical markers associated with metabolism, health effects and diseases orientation can be an effective means of screening biological targets for VOC exposure, which provide evidences to the toxicity assessment of compounds. The current review aims to understand the mechanisms underlying VOCs-elicited adverse outcomes by charactering various types of biomarkers. VOCs-related biomarkers from three aspects were summarized through in vitro, animal and epidemiological studies. i) Unmetabolized and metabolized VOC biomarkers in human samples for assessing exposure characteristics in different communities; ii) Adverse endpoint effects related biomarkers, mainly including (anti)oxidative stress, inflammation response and DNA damage; iii) Omics-based molecular biomarkers alteration in gene, protein, lipid and metabolite aspects associated with biological signaling pathway disorders response to VOC exposure. Further research, advanced machine learning and bioinformation approaches combined with experimental results are urgently needed to ascertain the selection of biomarkers and further illuminate toxic mechanisms of VOC exposure. Finally, VOCs-induced disease causes can be predicted with proven results.


Asunto(s)
Contaminantes Atmosféricos , Biomarcadores , Compuestos Orgánicos Volátiles , Biomarcadores/metabolismo , Humanos , Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales , Animales , Estrés Oxidativo
16.
Water Res ; 262: 122137, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39059198

RESUMEN

Bacterial biofilms pose significant a public health risk as an environmental reservoir for opportunistic aquatic bacterial pathogens. Understanding the interspecies roles of complex bacterial biofilms under different stimuli and regulatory mechanisms of stress responses is the key to controlling their dissemination. Herein, two-species mixture (TSM) biofilms (Staphylococcus aureus and Pseudomonas aeruginosa) were constructed in a flowthrough reactor. Compared with the single-species biofilms, the TSM biofilm had higher growth activity to reach maturity faster, forming a staggered community structure. Moreover, the TSM biofilm exhibited greatly improved resistance to different antibiotics (16-128 times higher), especially to those that act on protein synthesis and cell membrane integrity, when compared to single planktonic microorganisms. In the presence of stimuli, photocatalysis effectively inactivated the TSM biofilm within 10 h, a 4-fold shorter inactivation time compared to UVC irradiation. In addition, photocatalysis effectively depleted the extracellular polymers of the TSM biofilm and inhibited secretion of their interspecies quorum sensing signaling molecule autoinducer-2 (AI-2). However, the expression of AI-2 induced related virulence factors, and biofilm growth-related genes were initially up-regulated 3 - 10 fold for the TSM biofilm within the first 2 - 4 h of photocatalysis, followed by significant down-regulation. Furthermore, the addition of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione effectively delayed the photocatalytic inactivation efficiency of the TSM biofilm compared to the control. These results suggest that photocatalysis can effectively inactivate biofilms by inhibiting interspecies cooperation by quenching AI-2 in the TSM biofilm. This work sheds light on controlling biofilms in public health engineering systems.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Percepción de Quorum , Staphylococcus aureus , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/fisiología , Catálisis , Antibacterianos/farmacología , Lactonas/metabolismo , Homoserina/análogos & derivados , Microbiología del Agua , Rayos Ultravioleta
17.
Environ Int ; 190: 108857, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38954924

RESUMEN

Bioaerosols are more likely to accumulate in the residential environment, and long-term inhalation may lead to a variety of diseases and allergies. Here, we studied the distribution, influencing factors and diffusion characteristics of indoor and outdoor microbiota pollution in six residential buildings in Guangzhou, southern China over a period of one year. The results showed that the particle sizes of bioaerosol were mainly in the range of inhalable particle size (<4.7 µm) with a small difference among four seasons (74.61 % ± 2.17 %). The microbial communities showed obvious seasonal differences with high abundance in summer, but no obvious geographical differences. Among them, the bacteria were more abundant than the fungi. The dominant microbes in indoor and outdoor environments were similar, with Anoxybacillu, Brevibacillus and Acinetobacter as the dominant bacteria, and Cladosporium, Penicillium and Alternaria as the dominant fungi. The airborne microbiomes were more sensitive to temperature and particulate matter (PM2.5, PM10) concentrations. Based on the Sloan neutral model, bacteria were more prone to random diffusion than fungi, and the airborne microbiome can be randomly distributed in indoor and outdoor environments and between the two environments in each season. Bioaerosol in indoor was mainly from outdoor. The health risk evaluation showed that the indoor inhalation risks were higher than those outdoor. The air purifier had a better removal efficiency on 1.1-4.7 µm microorganisms, and the removal efficiency on Gram-negative bacteria was better than that on Gram-positive bacteria. This study is of great significance for the risk assessment and control of residential indoor bioaerosol exposure.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Bacterias , Hongos , Microbiota , Material Particulado , Estaciones del Año , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , China , Hongos/aislamiento & purificación , Bacterias/aislamiento & purificación , Bacterias/clasificación , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Tamaño de la Partícula , Monitoreo del Ambiente , Vivienda , Aerosoles/análisis , Humanos
18.
J Hazard Mater ; 476: 135121, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981233

RESUMEN

Pollution of the aqueous environment by volatile organic compounds (VOCs) has caused increasing concerns. However, the occurrence and risks of aqueous VOCs in oil exploitation areas remain unclear. Herein, spatial distribution, migration flux, and environmental risks of VOCs in complex surface waters (including River, Estuary, Offshore and Aquaculture areas) were investigated at a typical coastal oil exploitation site. Among these surface waters, River was the most polluted area, and 1,2-Dichloropropane-which emerges from oil extraction activities-was the most prevalent VOC. Positive matrix factorization showed that VOCs pollution sources changed from oil exploitation to offshore disinfection activities along River, Estuary, Offshore and Aquaculture areas. Annual volatilization of VOCs to the atmosphere was predicted to be ∼34.42 tons, and rivers discharge ∼23.70 tons VOCs into the Bohai Sea annually. Ecological risk assessment indicated that Ethylbenzene and Bromochloromethane posed potential ecological risks to the aquatic environment, while olfactory assessment indicated that VOCs in surface waters did not pose an odor exposure risk. This study provides the first assessment of the pollution characteristics of aqueous VOCs in complex aqueous environments of oil exploitation sites, highlighting that oil exploitation activities can have nonnegligible impacts on VOCs pollution profiles.

19.
Fundam Res ; 4(3): 442-454, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933213

RESUMEN

The aerosol transmission of coronavirus disease in 2019, along with the spread of other respiratory diseases, caused significant loss of life and property; it impressed upon us the importance of real-time bioaerosol detection. The complexity, diversity, and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring. Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods, preventing the high-resolution time-based characteristics necessary for an online approach. Through a comprehensive literature assessment, this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors. Methods applied in online bioaerosol monitoring, including adenosine triphosphate bioluminescence, laser/light-induced fluorescence spectroscopy, Raman spectroscopy, and bioaerosol mass spectrometry are summarized. The working principles, characteristics, sensitivities, and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences. Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced. Finally, an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.

20.
ACS Appl Mater Interfaces ; 16(27): 34720-34731, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38934381

RESUMEN

Anti-inflammatory and angiogenesis are two important factors in wound healing. Wound dressings with anti-inflammation and vascularization are essential to address complex interventions, expensive treatments, and uncontrolled release mechanisms. Based on the above considerations, we designed a near-infrared (NIR)-responsive hydrogel dressing, which is composed of mPDA-DFO@LA nanoparticles (mPDA: dopamine hydrochloride nanoparticles, DFO: deferoxamine, LA: lauric acid), valsartan (abbreviated as Va), and dopamine-hyaluronic acid hydrogel. The hydrogel dressing demonstrated injectability, bioadhesive, and photothermal properties. The results indicated the obtained dressing by releasing Va can appropriately regulate macrophage phenotype transformation from M1 to M2, resulting in an anti-inflammatory environment. In addition, DFO encapsulated by LA can be sustainably released into the wound site by NIR irradiation, which further prevents excessive neovascularization. Notably, the results in vivo indicated the mPDA-DFO@LA/Va hydrogel dressing significantly enhanced wound recovery, achieving a healing rate of up to 96% after 11 days of treatment. Therefore, this NIR-responsive hydrogel dressing with anti-inflammation, vascularization, and on-demand programmed drug release will be a promising wound dressing for wound infection.


Asunto(s)
Antiinflamatorios , Vendajes , Hidrogeles , Nanocompuestos , Cicatrización de Heridas , Animales , Ratones , Angiogénesis/efectos de los fármacos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Deferoxamina/química , Deferoxamina/farmacología , Deferoxamina/uso terapéutico , Dopamina/química , Dopamina/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Rayos Infrarrojos , Ácidos Láuricos/química , Ácidos Láuricos/farmacología , Nanocompuestos/química , Nanocompuestos/uso terapéutico , Células RAW 264.7 , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...