Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 43(11): 1933-1949, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37561416

RESUMEN

The ß-cyclocitric acid (ß-CCA) is a bioactive apocarotenoid previously shown to improve drought tolerance in annual plants. However, the underlying molecular mechanism of this process remains largely elusive. Moreover, the question about the activity of ß-CCA in perennial fruit crops is still open. Here, we found that treatment of ß-CCA enhances drought tolerance in peach seedlings. The application of ß-CCA significantly increased the relative water content and root activity and reduced the electrolyte leakage of peach seedlings under drought stress. Moreover, treatment with ß-CCA under drought stress increased chlorophyll fluorescence, indicating a positive effect on photosynthesis, while also enhancing superoxide dismutase and peroxidase activity and reducing reactive oxygen species (ROS) levels. Consistent with these alterations, transcriptome analysis revealed an up-regulation of photosynthesis and antioxidant-related genes upon the application of ß-CCA under drought stress. We also detected an induction in genes related to detoxification, environmental adaptation, primary metabolism, phytohormone, phenylpropanoid and the biosynthesis of cutin, suberine and wax, which might contribute to the induction of drought resistance. Altogether, our study reveals that ß-CCA positively modulates peach drought tolerance, which is mainly mediated by enhancing photosynthesis and reducing ROS, indicating the potential of utilizing ß-CCA for drought control in peach and perhaps other fruit crops.


Asunto(s)
Prunus persica , Prunus persica/metabolismo , Resistencia a la Sequía , Plantones/genética , Plantones/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fotosíntesis/fisiología , Antioxidantes/metabolismo , Sequías , Estrés Fisiológico/genética
2.
Plant Physiol ; 192(4): 3134-3151, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37165714

RESUMEN

Gummosis is 1 of the most common and destructive diseases threatening global peach (Prunus persica) production. Our previous studies have revealed that ethylene and methyl jasmonate enhance peach susceptibility to Lasiodiplodia theobromae, a virulent pathogen inducing gummosis; however, the underlying molecular mechanisms remain obscure. Here, 2 ethylene response factors (ERFs), PpERF98 and PpERF1, were identified as negative regulators in peach response to L. theobromae infection. Expression of 2 putative paralogs, PpERF98-1/2, was dramatically induced by ethylene and L. theobromae treatments and accumulated highly in the gummosis-sensitive cultivar. Silencing of PpERF98-1/2 increased salicylic acid (SA) content and pathogenesis-related genes PpPR1 and PpPR2 transcripts, conferring peach resistance to L. theobromae, whereas peach and tomato (Solanum lycopersicum) plants overexpressing either of PpERF98-1/2 showed opposite changes. Also, jasmonic acid markedly accumulated in PpERF98-1/2-silenced plants, but reduction in PpPR3, PpPR4, and PpCHI (Chitinase) transcripts indicated a blocked signaling pathway. PpERF98-1 and 2 were further demonstrated to directly bind the promoters of 2 putative paralogous PpERF1 genes and to activate the ERF branch of the jasmonate/ethylene signaling pathway, thus attenuating SA-dependent defenses. The lesion phenotypes of peach seedlings overexpressing PpERF1-1/2 and PpERF98-1/2 were similar. Furthermore, PpERF98-1/2 formed homodimers/heterodimers and interacted with the 2 PpERF1 proteins to amplify the jasmonate/ethylene signaling pathway, as larger lesions were observed in peach plants cooverexpressing PpERF98 with PpERF1 relative to individual PpERF98 overexpression. Overall, our work deciphers an important regulatory network of ethylene-mediated peach susceptibility to L. theobromae based on a PpERF98-PpERF1 transcriptional cascade, which could be utilized as a potential target for genetic engineering to augment protection against L. theobromae-mediated diseases in crops and trees.


Asunto(s)
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Etilenos/metabolismo , Plantas
3.
J Hazard Mater ; 454: 131442, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121032

RESUMEN

The natural resistance-associated macrophage protein (NRAMP) gene family assists in the transport of metal ions in plants. However, the role and underlying physiological mechanism of NRAMP genes under heavy metal toxicity in perennial trees remain to be elucidated. In Prunus persica, five NRAMP family genes were identified and named according to their predicted phylogenetic relationships. The expression profiling analysis indicated that PpNRAMPs were significantly induced by excess manganese (Mn), iron, zinc, and cadmium treatments, suggesting their potential role in heavy metal uptake and transportation. Notably, the expression of PpNRAMP5 was tremendously increased under Mn toxicity stress. Heterologous expression of PpNRAMP5 in yeast cells also confirmed Mn transport. Suppression of PpNRAMP5 through virus-induced gene silencing enhanced Mn tolerance, which was compromised when PpNRAMP5 was overexpressed in peach. The silencing of PpNRAMP5 mitigated Mn toxicity by dramatically reducing Mn contents in roots, and effectively reduced the chlorophyll degradation and improved the photosynthetic apparatus under Mn toxicity stress. Therefore, PpNRAMP5-silenced plants were less damaged by oxidative stress, as signified by lowered H2O2 contents and O2•- staining intensity, also altered the reactive oxygen species (ROS) homeostasis by activating enzymatic antioxidants. Consistently, these physiological changes showed an opposite trend in the PpNRAMP5-overexpressed peach plants. Altogether, our findings suggest that downregulation of PpNRAMP5 markedly reduces the uptake and transportation of Mn, thus activating enzymatic antioxidants to strengthen ROS scavenging capacity and photosynthesis activity, thereby mitigating Mn toxicity in peach plants.


Asunto(s)
Metales Pesados , Prunus persica , Plantones , Manganeso/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Filogenia , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Plantas
4.
Plant Dis ; 107(7): 2205-2208, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36947835

RESUMEN

Botryosphaeria dothidea is a worldwide pathogenic fungus that causes stem canker, leaf dieback, and fruit rot on a large number of crops and trees. Gummosis caused by B. dothidea is one of the most prevalent and devastating diseases on peach in southern China. This study reported a high-quality and well-annotated genome sequence of B. dothidea strain XNHG241. The findings can be used as a reference for studying fungal biology, pathogenic mechanism of B. dothidea, and the interaction between B. dothidea and host, and eventually facilitate peach gummosis management.


Asunto(s)
Ascomicetos , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Ascomicetos/genética , China
5.
Tree Physiol ; 43(7): 1265-1283, 2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-36905330

RESUMEN

Waterlogging is a major abiotic stress that plants encounter as a result of climate change impacts. Peach is very sensitive to hypoxia during waterlogging, which causes poor tree vigor and huge economic losses. The molecular mechanism underlying the peach response to waterlogging and reoxygenation remains unclear. Here, the physiological and molecular responses of 3-week-old peach seedlings under waterlogged and recovery conditions were comprehensively analyzed. As a result, waterlogging significantly reduced plant height and biomass with inhibition of root growth when compared with control and reoxygenation. Similar results were observed for photosynthetic activities and gaseous exchange parameters. Waterlogging increased lipid peroxidation, hydrogen peroxide, proline, glutamic acid and glutathione contents, while superoxide dismutase, peroxidases and catalase activities were decreased. The glucose and fructose contents were accumulated, contrary to sucrose which was reduced remarkably throughout the stress periods. The level of endogenous indole acetic acid (IAA) was increased in waterlogging but decreased after reoxygenation. However, the change trends of jasmonic acid (JA), cytokinins and abscisic acid (ABA) levels were opposite to IAA. In transcriptomic analysis, there were 13,343 differentially expressed genes (DEGs) with higher and 16,112 genes with lower expression. These DEGs were greatly enriched in carbohydrate metabolism, anaerobic fermentation, glutathione metabolism and IAA hormone biosynthesis under waterlogging, while they were significantly enriched in photosynthesis, reactive oxygen species scavenging, ABA and JA hormones biosynthesis in reoxygenation. Moreover, several genes related to stress response, carbohydrate metabolism and hormones biosynthesis were significantly changed in waterlogging and reoxygenation, which indicated unbalanced amino acid, carbon and fatty acid pools in peach roots. Taken together, these results suggest that glutathione, primary sugars and hormone biosynthesis and signaling might play key roles in plant response to waterlogging. Our work provides a comprehensive understanding of gene regulatory networks and metabolites in waterlogging stress and its recuperation, which will facilitate peach waterlogging control.


Asunto(s)
Prunus persica , Prunus persica/metabolismo , Transcriptoma , Ácido Abscísico/metabolismo , Plantas/metabolismo , Glutatión , Hormonas
7.
Chemosphere ; 303(Pt 3): 135196, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35659937

RESUMEN

Heavy metal/metalloids (HMs) are among the primary soil pollutants that limit crop production worldwide. Plants grown in HM contaminated soils exhibit reduced growth and development, resulting in a decrease in crop production. The exposure to HMs induces plant oxidative stress due to the formation of free radicals, which alter plant morphophysiological and biochemical mechanisms at cellular and tissue levels. When exposed to HM toxicity, plants evolve sophisticated physiological and cellular defense strategies, such as sequestration and transportation of metals, to ensure their survival. Plants also have developed efficient strategies by activating signaling pathways, which induce the expression of HM transporters. Plants either avoid the uptake of HMs from the soil or activate the detoxifying mechanism to tolerate HM stress, which involves the production of antioxidants (enzymatic and non-enzymatic) for the scavenging of reactive oxygen species. The metal-binding proteins including phytochelatins and metallothioneins also participate in metal detoxification. Furthermore, phytohormones and their signaling pathways also help to regulate cellular activities to counteract HM stress. The excessive levels of HMs in the soil can contribute to plant morpho-physiological, biochemical, and molecular alterations, which have a detrimental effect on the quality and productivity of crops. To maintain the commercial value of fruits and vegetables, various measures should be considered to remove HMs from the metal-polluted soils. Bioremediation is a promising approach that involves the use of tolerant microorganisms and plants to manage HMs pollution. The understanding of HM toxicity, signaling pathways, and tolerance mechanisms will facilitate the development of new crop varieties that help in improving phytoremediation.


Asunto(s)
Metaloides , Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Metaloides/metabolismo , Metales Pesados/análisis , Plantas/metabolismo , Suelo , Contaminantes del Suelo/análisis
8.
Hortic Res ; 92022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35040976

RESUMEN

Gummosis, one of the most detrimental diseases to the peach industry worldwide, can be induced by Lasiodiplodia theobromae. Ethylene (ET) is known to trigger the production of gum exudates, but the mechanism underlying fungus-induced gummosis remains unclear. In this study, L. theobromae infection triggered the accumulation of ET and jasmonic acid (JA) but not salicylic acid (SA) in a susceptible peach variety. Gaseous ET and its biosynthetic precursor increased gum formation, whereas ET inhibitors repressed it. SA and methyl-jasmonate treatments did not influence gum formation. RNA-seq analysis indicated that L. theobromae infection and ET treatment induced a shared subset of 1808 differentially expressed genes, which were enriched in the category "starch and sucrose, UDP-sugars metabolism". Metabolic and transcriptional profiling identified a pronounced role of ET in promoting the transformation of primary sugars (sucrose, fructose, and glucose) into UDP-sugars, which are substrates of gum polysaccharide biosynthesis. Furthermore, ethylene insensitive3-like1 (EIL1), a key transcription factor in the ET pathway, could directly target the promoters of the UDP-sugar biosynthetic genes UXS1a, UXE, RGP and MPI and activate their transcription, as revealed by firefly luciferase and yeast one-hybrid assays. On the other hand, the supply of SA and inhibitors of ET and JA decreased the lesion size. ET treatment reduced JA levels and the transcription of the JA biosynthetic gene OPR but increased the SA content and the expression of its biosynthetic gene PAL. Overall, we suggest that endogenous and exogenous ET aggravate gummosis disease by transactivating UDP-sugar metabolic genes through EIL1 and modulating JA and SA biosynthesis in L. theobromae-infected peach shoots. Our findings shed light on the molecular mechanism by which ET regulates plant defense responses in peach during L. theobromae infection.

9.
Chemosphere ; 291(Pt 3): 132999, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34808198

RESUMEN

In this study, we evaluated the mitigative role of phosphorus (P) in terms of manganese (Mn) toxicity in peach (Prunus persica L.) plants. Ten-day-old seedlings were treated with excess Mn (1 mM MnSO4) alone and in combination with different P levels (100, 150, 200 and 250 µM KH2PO4) in half-strength Hoagland medium. The results demonstrated that Mn toxicity plants accumulated a significant amount of Mn in their tissues, and the concentration was higher in roots than in leaves. The accumulated Mn led to a considerable reduction in plant biomass, water status, chlorophyll content, photosynthetic rate, and disrupted the chloroplast ultrastructure by increasing oxidative stress (H2O2 and O2•-). However, P supplementation dramatically improved plant biomass, leaf relative water and chlorophyll contents, upregulating the ascorbate-glutathione pool and increasing the activities of antioxidant enzymes (superoxide dismutase; peroxidase dismutase; ascorbate peroxidase; monodehydroascorbate reductase; dehydroascorbate reductase), thus reducing oxidative damage as evidenced by lowering H2O2 and O2•- staining intensity. Moreover, P application markedly restored stomatal aperture and improved chloroplast ultrastructure, as indicated by the improved performance of photosynthetic machinery. Altogether, our findings suggest that P (250 µM) has a great potential to induce tolerance against Mn toxicity by limiting Mn accumulation in tissues, upregulating antioxidant defense mechanisms, alleviating oxidative damage, improving chloroplast ultrastructure and photosynthetic performance in peach plants.


Asunto(s)
Prunus persica , Antioxidantes/metabolismo , Clorofila , Cloroplastos/metabolismo , Peróxido de Hidrógeno , Manganeso/toxicidad , Estrés Oxidativo , Fósforo , Hojas de la Planta/metabolismo , Prunus persica/metabolismo , Plantones/metabolismo
10.
Front Microbiol ; 12: 741842, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630367

RESUMEN

Lasiodiplodia theobromae is one of the primary causal agents in peach gummosis disease, leading to enormous losses in peach production. In our previous study, a redox-related gene, LtAP1, from the fungus was significantly upregulated in peach shoots throughout infection. Here, we characterized LtAP1, a basic leucine zipper transcription factor, during peach gummosis progression using the CRISPR-Cas9 system and homologous recombination. The results showed that LtAP1-deletion mutant had slower vegetative growth and increased sensitivity to several oxidative and nitrosative stress agents. LtAP1 was highly induced by exogenous oxidants treatment in the L. theobromae wild-type strain. In a pathogenicity test, the deletion mutant showed decreased virulence (reduced size of necrotic lesions, less gum release, and decreased pathogen biomass) on infected peach shoots compared to the wild-type strain. The mutant showed severely reduced transcription levels of genes related to glutaredoxin and thioredoxin in L. theobroame under oxidative stress or during infection, indicating an attenuated capacity for reactive oxygen species (ROS) detoxification. When shoots were treated with an NADPH oxidase inhibitor, the pathogenicity of the mutant was partially restored. Moreover, ROS production and plant defense response were strongly activated in peach shoots infected by the mutant. These results highlight the crucial role of LtAP1 in the oxidative stress response, and further that it acts as an important virulence factor through modulating the fungal ROS-detoxification system and the plant defense response.

11.
Front Plant Sci ; 12: 794881, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975982

RESUMEN

Autotoxicity is known as a critical factor in replanting problem that reduces land utilization and creates economic losses. Benzoic acid (BA) is identified as a major autotoxin in peach replant problem, and causes stunted seedling growth or even death. However, the physiological and molecular mechanisms of peach response to BA stress remain elusive. Here, we comprehensively studied the morphophysiological, transcriptional, and metabolic responses of peach plants to BA toxicity. Results showed that BA stress inhibited peach seedlings growth, decreased chlorophyll contents and fluorescence levels, as well as disturbed mineral metabolism. The contents of hydrogen peroxide, superoxide anion, and malondialdehyde, as well as the total antioxidant capacity, were significantly increased under BA stress. A total of 6,319 differentially expressed genes (DEGs) were identified after BA stress, of which the DEGs related to photosynthesis, redox, and ion metabolism were greatly changed; meanwhile, numerous stress-responsive genes (HSPs, GSTs, GR, and ABC transporters) and transcription factors (MYB, AP2/ERF, NAC, bHLH, and WRKY) were noticeably altered under BA stress. BA induced metabolic reprogramming, and 74 differentially accumulated metabolites, including amino acids and derivatives, fatty acids, organic acids, sugars, and sugar alcohols, were identified in BA-stressed roots. Furthermore, an integrated analysis of genes and metabolites indicated that most of the co-mapped KEGG pathways were enriched in amino acid and carbohydrate metabolism, which implied a disturbed carbon and nitrogen metabolism after BA stress. The findings would be insightful in elucidating the mechanisms of plant response to autotoxicity stress, and help guide crops in alleviating replant problem.

12.
Plant Physiol Biochem ; 154: 43-53, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32526610

RESUMEN

Peach gummosis caused by Lasiodiplodia theobromae is one of the most detrimental diseases to peaches in southern China. Reactive oxygen species (ROS) play major roles in plant-pathogen interactions, however, their roles in the pathogenesis of peach gummosis, especially shoot disease in perennials, are largely unknown. In this study, the effects of L. theobromae on ROS production-scavenging systems and on signalling transduction during L. theobromae-induced gummosis in current-year peach shoots were investigated. The infection by L. theobromae led to a ROS burst and activated the plant antioxidant enzyme-dependent scavenging system. With disease progression, the capacity of the plant antioxidant machinery declined, and allowed for ROS accumulation and eventual malondialdehyde production. As for the fungus L. theobromae, the transcripts of genes related to ROS production were significantly repressed, and concomitantly the expression of genes related to antioxidant systems and oxidative stress resistance was markedly upregulated, perhaps to alleviate oxidative stress for successful colonisation. Moreover, genes involved in phytohormones biosynthesis and pathogenesis-related proteins were all markedly promoted, which could contribute to the restriction of disease development in peach shoots. Overall, the results showed that the ROS production-scavenging system in P. persica might affect disease development during peach-L. theobromae interaction. Our findings lay the foundations for future in-depth investigations of the molecular mechanisms and regulatory networks underlying L. theobromae-mediated shoot diseases in terms of ROS production-scavenging systems.


Asunto(s)
Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Prunus persica/microbiología , Especies Reactivas de Oxígeno/metabolismo , Depuradores de Radicales Libres/metabolismo , Prunus persica/metabolismo
13.
Plant Sci ; 283: 116-126, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128681

RESUMEN

Ethylene response factors (ERFs) are known to regulate fruit ripening. However, the ERF regulatory networks are not clear. In this study, we have shown that peach (Prunus persica) PpeERF2 regulates fruit ripening through suppressing the expression of two ABA biosynthesis genes (PpeNCED2, PpeNCED3) and a cell wall degradation gene (PpePG1). The transcript levels of PpeERF2 in fruit were opposite to that of PpeNCED2, PpeNCED3 and PpePG1 during ripening and in response to various ripening treatments. PpeERF2 was found to bind to the PpeNCED2, PpeNCED3 and PpePG1 promotors as demonstrated by yeast one-hybrid (Y1H) and EMSA assays; and further found to repress the promoter activities of the three genes in tobacco leaf tissues after Agrobacterium infiltration. Taken together, these results provide new information for a better understanding of the crosstalk network between ethylene signaling, cell wall degradation and ABA biosynthesis during fruit ripening.


Asunto(s)
Ácido Abscísico/biosíntesis , Pared Celular/metabolismo , Frutas/metabolismo , Proteínas de Plantas/fisiología , Prunus persica/metabolismo , Proteínas Represoras/fisiología , Ácido Abscísico/metabolismo , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Prunus persica/genética , Prunus persica/crecimiento & desarrollo , Prunus persica/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Alineación de Secuencia , Técnicas del Sistema de Dos Híbridos
14.
Hortic Res ; 6: 19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30729009

RESUMEN

The plant hormone ethylene regulates ripening in climacteric fruits. The phytohormone abscisic acid (ABA) affects ethylene biosynthesis, but whether ethylene influences ABA biosynthesis is unknown. To explore this possibility, we investigated the interactions between the ABA biosynthesis genes PpNCED2/3 and the ethylene response transcription factor PpERF3 in peach fruit. The ABA content increased during fruit maturation and reached a peak at stage S4 III. The increase was greatly inhibited by the ethylene inhibitor 1-MCP, which also suppressed PpERF3 expression. PpERF3 shared a similar expression profile with PpNCED2/3, encoding a rate-limiting enzyme involved in ABA biosynthesis, during fruit ripening. A yeast one-hybrid assay suggested that the nuclear-localized PpERF3 might bind to the promoters of PpNCED2/3. PpERF3 increased the expression of PpNCED2/3 as shown by dual-luciferase reporters, promoter-GUS assays and transient expression analyses in peach fruit. Collectively, these results suggest that ethylene promotes ABA biosynthesis through PpERF3's regulation of the expression of ABA biosynthesis genes PpNCED2/3.

15.
Fungal Biol ; 123(1): 51-58, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30654957

RESUMEN

Lasiodiplodia theobromae, a phytopathogenic fungus that causes peach gummosis, is considered one of the major constraints to peach production worldwide. Here, we report the characteristics of toxic metabolites and the proteomics investigation of the secreted proteins of L. theobromae from its in vitro culture. The phytotoxins of L. theobromae from the culture filtrate of Richard's liquid medium showed high toxicity on peach current year shoots with large lesion diameter and high gum weight. The toxicity measurement showed that 23.6 and 21.2 mg gum were induced from peach shoots by solvent fractions of ethyl acetate and dichloromethane, respectively, with significant differences from other organic solvents. A total of 23 proteins were identified by liquid chromatography-mass spectrometry from the in vitro secretome of L. theobromae. Sequence analysis indicated that 14 proteins were extracellular proteins based on signal peptides and localization. The expression profiles of the analyzed fungal genes were significantly upregulated from 1 day postinoculation (dpi) to 2 dpi, indicating that the early stage is an important stage for the infection of L. theobromae. The present study has provided insights into the extracellular phytotoxins and secreted proteins that are possibly associated with pathogenicity of the peach gummosis.


Asunto(s)
Ascomicetos/aislamiento & purificación , Ascomicetos/metabolismo , Proteínas Fúngicas/análisis , Micotoxinas/análisis , Enfermedades de las Plantas/microbiología , Prunus persica , Ascomicetos/genética , Cromatografía Liquida , Perfilación de la Expresión Génica , Espectrometría de Masas , Micotoxinas/aislamiento & purificación , Micotoxinas/toxicidad , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Proteoma/análisis , Análisis de Secuencia de ADN
16.
BMC Genomics ; 19(1): 846, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30486776

RESUMEN

BACKGROUND: The green peach aphid (GPA), Myzus persicae (Sülzer), is a widespread phloem-feeding insect that significantly influences the yield and visual quality of peach [Prunus persica (L.) Batsch]. Single dominant gene (Rm3)-based resistance provides effective management of this invasive pest, although little is known about the molecular responses of plants to GPA feeding. RESULTS: To illustrate the molecular mechanisms of monogenic resistance in peach to young tissue-infecting GPAs, aphid-resistant/aphid-susceptible peach lines from a segregating population with Rm3/rm3 and rm3/rm3 genotypes were infested with GPAs for 3 to 72 h. Transcriptome analysis of the infested tissues identified 3854 differentially expressed genes (DEGs). Although the majority of the DEGs in the resistant line also responded to aphid attack in the susceptible line, the overall magnitude of change was greater in the resistant line than in the susceptible line. The enriched gene ontology of the 3854 DEGs involved in plant defence responses included redox situation, calcium-mediated signalling, transcription factor (e.g., WRKY, MYB, and ERF), MAPK signalling cascade, phytohormone signalling, pathogenesis-related protein, and secondary metabolite terms. Of the 53 genes annotated in a 460 kb interval of the rm3 locus, seven genes were differentially expressed between the aphid-resistant and aphid-susceptible peach lines following aphid infestation. CONCLUSIONS: Together, these results suggest that the Rm3-dependent resistance relies mainly on the inducible expression of defence-related pathways and signalling elements within hours after the initiation of aphid feeding and that the production of specific secondary metabolites from phenylpropanoid/flavonoid pathways can have major effects on peach-aphid interactions.


Asunto(s)
Áfidos/fisiología , Resistencia a la Enfermedad/genética , Sitios Genéticos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Prunus persica/genética , Prunus persica/parasitología , Transcriptoma/genética , Animales , Cromosomas de las Plantas/genética , Análisis por Conglomerados , Conducta Alimentaria , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Estudios de Asociación Genética , Fenotipo , Enfermedades de las Plantas/genética , Brotes de la Planta/genética , Prunus persica/inmunología , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
17.
Data Brief ; 12: 358-360, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28491939

RESUMEN

The data presented in this article are related to the article entitled "The impact of a novel peach gum-derived polysaccharide on postprandial blood glucose control in streptozotocin-induced diabetic mice" (Wang et al., 2017) [1]. Polydipsia was one of the most important symptoms of diabetic mellitus (DM) mice, which showed more water consumption than normal ones. The water consumption of DM mice in different groups administrated with metformin hydrochloride or a novel polysaccharide (coded as PGPSD) were exhibited in this article (Fig. 1). The field data set is made publicly available to enable critical or extended analyzes.

18.
Int J Biol Macromol ; 98: 379-386, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28115227

RESUMEN

Peach [Prunus persica (L.)] gum exudates are produced by the trunks and fruits in peach gummosis. Clinically, these exudates have been used to treat diabetes in China, though the molecular mechanism underlying remains unclear. In the current study, a novel peach gum-derived polysaccharide was isolated, designated as PGPSD, and its anti-diabetic effect was assessed in mice. This polysaccharide was composed of arabinose, xylose and galactose in the molar ratio of 5.98:1:3.55, with the average molecular weight at 1.00×106Da. The animal study demonstrated that the PGPSD polysaccharide significantly lowered the postprandial blood glucose in streptozotocin-induced diabetic mice. Histology and immunohistochemistry results further confirmed that the application of PGPSD polysaccharide partially restored the pancreatic islets in diabetic mice, and enhanced the expression of pancreatic duodenal homeobox-1, insulin and hexokinase1. Collectively, the data suggested that the peach gum-derived polysaccharide had a meaningful potential as a non-insulin therapeutic compound in the treatment of diabetes.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Gomas de Plantas/química , Polisacáridos/farmacología , Periodo Posprandial/efectos de los fármacos , Prunus persica/química , Células 3T3-L1 , Animales , Diabetes Mellitus Experimental/patología , Células Hep G2 , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/toxicidad , Insulina/sangre , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Peso Molecular , Monosacáridos/análisis , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Polisacáridos/química , Polisacáridos/uso terapéutico , Polisacáridos/toxicidad
19.
Front Physiol ; 7: 170, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242544

RESUMEN

Lasiodiplodia theobromae is a causal agent of peach (Prunus persica L.) tree gummosis, a serious disease affecting peach cultivation and production. However, the molecular mechanism underlying the pathogenesis remains unclear. RNA-Seq was performed to investigate gene expression in peach shoots inoculated or mock-inoculated with L. theobromae. A total of 20772 genes were detected in eight samples; 4231, 3750, 3453, and 3612 differentially expressed genes were identified at 12, 24, 48, and 60 h after inoculation, respectively. Furthermore, 920 differentially co-expressed genes (515 upregulated and 405 downregulated) were found, respectively. Gene ontology annotation revealed that phenylpropanoid biosynthesis and metabolism, uridine diphosphate-glucosyltransferase activity, and photosynthesis were the most differentially regulated processes during gummosis development. Significant differences were also found in the expression of genes involved in glycometabolism and in ethylene and jasmonic acid biosynthesis and signaling. These data illustrate the dynamic changes in gene expression in the inoculated peach shoots at the transcriptome level. Overall, gene expression in defense response and glycometabolism might result in the gummosis of peach trees induced by L. theobromae.

20.
Plant Dis ; 100(2): 345-351, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30694151

RESUMEN

Peach gummosis, caused by Lasiodiplodia theobromae, is one of the most prevalent diseases that affects peach production. In this study, we investigated the effect of zinc sulfate on inoculated peach shoots, as well as on the growth, morphology, and pathogenicity of L. theobromae in vitro, in the laboratory. Zinc deficiency was detected in diseased peach shoots by micronutrient analysis (Cu, Mn, and Zn) and confirmed by the measurement of transcript levels of zinc transporters (ZIP4, HAM4, and ZAT). The zinc was transferred from the diseased peach shoots to the peach gum. Applying zinc sulfate to the diseased peach shoots reduced the severity of peach gummosis, showing significantly reduced lesion size and gum weight, as well as downregulation of cell wall degradation-related gene (PG and PME) compared with the control. Zinc sulfate also specifically controlled peach gummosis under L. theobromae phytotoxin stress and induced the expression of defense-related genes (PR4, CHI, PAL, PGIP, and GNS3). In addition, in vitro mycelial growth of L. theobromae was significantly inhibited by zinc sulfate compared with the control. Zinc sulfate caused abnormal hyphae at 25 mM and swelling hyphal tips at 50 mM. Exposure of L. theobromae to zinc sulfate for 20 min inhibited the ability of the pathogen to cause peach gummosis. Our physiological and molecular data demonstrated that zinc sulfate has a dual function by reducing susceptibility in the host and by direct inhibition of the pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...