Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
1.
Front Oncol ; 14: 1341068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715781

RESUMEN

Gastric-type endocervical adenocarcinoma (G-EAC) represents a rare variant of cervical mucinous adenocarcinoma that is typically unrelated to human papillomavirus (HPV) infection. G-EAC exhibits highly atypical clinical presentations and characteristics, and aggressive biological behavior often leads to challenges in timely diagnosis. Here, we present a case study involving a 74-year-old Chinese woman who experienced urinary incontinence for one month. Biopsy pathology confirmed the diagnosis of G-EAC, revealing stage IVa by imaging examinations. The patient subsequently underwent three cycles of chemotherapy, followed by adjuvant radiotherapy and surgical excision of residual tumor foci. This comprehensive treatment approach yielded a favorable survival outcome. For patients with advanced G-EAC, a multimodal therapeutic approach holds promise and warrants further exploration.

2.
J Chromatogr A ; 1727: 464988, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38749348

RESUMEN

In this research, a novel magnetic nanocomposite (Fe3O4@Zn/Al-LABSA-LDH/ZIF-8) was synthesized using Fe3O4 as the magnetic core, layered double hydroxide (LDH) with linear alkylbenzene sulfonic acid (LABSA) intercalation and zeolitic imidazolate framework-8 (ZIF-8) as the shell. Benefiting from the intercalation of LABSA into LDH combined with ZIF-8, the multiple interactions, including π-π stacking, hydrogen bonding, and electrostatic interactions, conferred high selectivity and good extraction capability to the material towards heterocyclic aromatic amines (HAAs). Fe3O4@Zn/Al-LABSA-LDH@ZIF-8 was used as an adsorbent for magnetic solid-phase extraction (MSPE) to enrich HAAs in thermally processed meat samples, followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) detection. The method exhibited a low detection limit (0.021-0.221 ng/g), good linearity (R2 ≥ 0.9999), high precision (RSD < 7.2 %), and satisfactory sample recovery (89.7 % -107.5 %). This research provides a promising approach for developing novel adsorbents in sample preparation and improving analytical performance.

3.
Adv Ther ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616242

RESUMEN

INTRODUCTION: Despite the appearance of off-pump coronary artery bypass grafting (CABG), ischemia-reperfusion injury (IRI) in the perioperative period still arouses concerns of clinicians. Remote ischemic conditioning (RIC) is the process of repeated ischemia and reperfusion in the peripheral vessels, which is proven to reduce IRI in vital organs. However, the effect of RIC in patients undergoing off-pump CABG is still unclear. METHODS: This IMPROVE trial is a national, multicenter, randomized, controlled, open-label, blinded-endpoint clinical trial designed to assess whether RIC intervention can improve short-term prognosis of patients undergoing off-pump CABG. It plans to enroll 648 patients who will be randomly assigned into a RIC group or control group. Patients in the RIC group will receive four cycles of 5 min of pressurization (about 200 mmHg) and 5 min of rest in the 3 days before and 7 days after the surgery. PLANNED OUTCOMES: The primary outcome is the occurrence of major adverse cardiovascular and cerebrovascular events (MACCE) within the 3-month follow-up. MACCE is defined as all-cause death, myocardial infarction, stroke, and coronary revascularization surgery. CLINICAL TRIAL REGISTRATION: NCT06141525 (ClinicalTrials.gov).

4.
Int J Biol Macromol ; 267(Pt 2): 131285, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583841

RESUMEN

Thermal stability and iron saturation of lactoferrin (LF) are of great significance not only for the evaluation of the biological activities of LF but also for the optimization of the isolation and drying process parameters. Differential scanning calorimetry (DSC) is a well-established and efficient method for thermal stability and iron saturation detection in LF. However, multiple DSC measurements are typically performed sequentially, thus time-consuming and low throughput. Herein, we introduced the differential scanning fluorimetry (DSF) approach to overcome such limitations. The DSF can monitor LF thermal unfolding with a commonly available real-time PCR instrument and a fluorescent dye (SYPRO orange or Glomelt), and the measured melting temperature of LF is consistent with that determined by DSC. On the basis of that, a new quantification method was established for determination of iron saturation levels using the linear correlation of the degree of ion saturation of LF with DSF measurements. Such DSF method is simple, inexpensive, rapid (<15 min), and high throughput (>96 samples per experiment), and provides a valuable alternative tool for thermal stability detection of LF and other whey proteins.


Asunto(s)
Fluorometría , Hierro , Lactoferrina , Estabilidad Proteica , Lactoferrina/química , Lactoferrina/análisis , Hierro/química , Fluorometría/métodos , Rastreo Diferencial de Calorimetría/métodos , Temperatura , Ensayos Analíticos de Alto Rendimiento/métodos
5.
Prostate ; 84(9): 877-887, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38605532

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the second-leading cause of cancer mortalities in the United States and is the most commonly diagnosed malignancy in men. While androgen deprivation therapy (ADT) is the first-line treatment option to initial responses, most PCa patients invariably develop castration-resistant PCa (CRPC). Therefore, novel and effective treatment strategies are needed. The goal of this study was to evaluate the anticancer effects of the combination of two small molecule inhibitors, SZL-P1-41 (SKP2 inhibitor) and PBIT (KDM5B inhibitor), on PCa suppression and to delineate the underlying molecular mechanisms. METHODS: Human CRPC cell lines, C4-2B and PC3 cells, were treated with small molecular inhibitors alone or in combination, to assess effects on cell proliferation, migration, senescence, and apoptosis. RESULTS: SKP2 and KDM5B showed an inverse regulation at the translational level in PCa cells. Cells deficient in SKP2 showed an increase in KDM5B protein level, compared to that in cells expressing SKP2. By contrast, cells deficient in KDM5B showed an increase in SKP2 protein level, compared to that in cells with KDM5B intact. The stability of SKP2 protein was prolonged in KDM5B depleted cells as measured by cycloheximide chase assay. Cells deficient in KDM5B were more vulnerable to SKP2 inhibition, showing a twofold greater reduction in proliferation compared to cells with KDM5B intact (p < 0.05). More importantly, combined inhibition of KDM5B and SKP2 significantly decreased proliferation and migration of PCa cells as compared to untreated controls (p < 0.005). Mechanistically, combined inhibition of KDM5B and SKP2 in PCa cells abrogated AKT activation, resulting in an induction of both cellular senescence and apoptosis, which was measured via Western blot analysis and senescence-associated ß-galactosidase (SA-ß-Gal) staining. CONCLUSIONS: Combined inhibition of KDM5B and SKP2 was more effective at inhibiting proliferation and migration of CRPC cells, and this regimen would be an ideal therapeutic approach of controlling CRPC malignancy.


Asunto(s)
Apoptosis , Senescencia Celular , Histona Demetilasas con Dominio de Jumonji , Neoplasias de la Próstata Resistentes a la Castración , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas Asociadas a Fase-S , Transducción de Señal , Humanos , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Fase-S/genética , Masculino , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Células PC-3 , Proteínas Nucleares , Proteínas Represoras
6.
Magn Reson Chem ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666325

RESUMEN

The spin Hamiltonian parameters and defect structures are theoretically studied for the substitutional Mn2+ at the core of CdSe nanocrystals and in the bulk materials from the perturbation calculations of spin Hamiltonian parameters for trigonal tetrahedral 3d5 clusters. Both the crystal-field and charge transfer contributions are taken into account in the calculations from the cluster approach. The impurity-ligand bond angles are found to be about 1.84° larger and 0.10° smaller in the CdSe:Mn2+ nanocrystals and bulk materials, respectively, than those (≈109.37°) of the host Cd2+ sites. The quantitative criterion of occupation (at the core or surface) for Mn2+ in CdX (X = S, Se, Te) nanocrystals is presented for the first time based on the inequations of hyperfine structure constants (HSCs). This criterion is well supported by the experimental HSCs data of Mn2+ in CdX nanocrystals. The previous assignments of signals SI as Mn2+ at the core of CdS nanocrystals are renewed as Mn2+ at the surface based on the above criterion. The present studies would be helpful to achieve convenient determination of occupation for Mn2+ impurities in CdX semiconductor nanocrystals by means of spectral (e.g., HSCs) analysis.

7.
Environ Sci Pollut Res Int ; 31(20): 29656-29668, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587778

RESUMEN

The substantial amount of mercury emissions from coal-fired flue gas causes severe environmental contamination. With the Minamata Convention now officially in force, it is critical to strengthen mercury pollution control. Existing activated carbon injection technologies suffer from poor desulfurization performance and risk secondary-release risks. Therefore, considering the potential industrial application of adsorbents, we selected cost-effective and readily available activated coke (AC) as the carrier in this study. Four metal selenides-copper, iron, manganese, and tin-were loaded onto the AC to overcome the application problems of existing technologies. After 120 min of adsorption, the CuSe/AC exhibited the highest efficiency in removing Hg0, surpassing 80% according to the experimental findings. In addition, the optimal adsorption temperature window was 30-120 °C, the maximum adsorption rate was 2.9 × 10-2 mg·g-1·h-1, and the effectiveness of CuSe/AC in capturing Hg0 only dropped by 5.2% in the sulfur-containing atmosphere. The physicochemical characterization results indicated that the AC surface had a uniform loading of CuSe with a nanosheet structure resembling polygon and that the Cu-to-Se atomic ratio was close to 1:1. Finally, two possible Hg0 reaction pathways on CuSe/AC were proposed. Moreover, it was elucidated that the highly selective binding of Hg0 with ligand-unsaturated Se- was the key factor in achieving high adsorption efficiency and sulfur resistance in the selenium-functionalized AC adsorbent. This finding offers substantial theoretical support for the industrial application of this adsorbent.


Asunto(s)
Carbón Mineral , Coque , Mercurio , Selenio , Adsorción , Selenio/química , Mercurio/química , Contaminantes Atmosféricos/química
8.
Int J Cardiol ; 407: 132029, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583590

RESUMEN

BACKGROUND: Programmed cell death 1 (PD-1) inhibitors can induce various adverse reactions associated with immunity, of which cardiotoxicity is a serious complication. Limited research exists on the link between PD-1 inhibitor use and pericardial effusion (PE) occurrence and outcomes. METHODS: We conducted a retrospective study at the First Affiliated Hospital of Xi'an Jiaotong University from 2017 to 2019, comparing cancer patients who developed PE within 2 years after PD-1 inhibitor therapy to those who did not. Our primary outcome was the all-cause mortality rate at one year. We applied the Kaplan-Meier method for survival analysis. Multivariate logistic regression was utilized to identify PE risk factors, adjusting for potential confounders. RESULTS: A total of 91 patients were finally included, of whom 39 patients had PE. Compared to non-PE group, one-year all-cause mortality was nearly 5 times higher in PE group (64.10% vs. 13.46%, P < 0.001). Patients who developed PE within 2 years of taking PD-1 inhibitors were significantly associated with increased all-cause mortality compared with those who did not (HR: 6.26, 95%CI: 2.70-14.53, P < 0.001). Multivariable logistic regression showed that use of sintilimab (OR: 14.568, 95%CI: 3.431-61.857, P < 0.001), history of lung cancer (OR: 15.360, 95%CI: 3.276-72.017, P = 0.001), and history of hypocalcemia (OR: 7.076, 95%CI: 1.879-26.649, P = 0.004) were independent risk factors of PE development in patients received PD-1 inhibitors therapy. CONCLUSIONS: In cancer patients receiving PD-1 inhibitors, PE was associated with higher one-year mortality. Use of sintilimab, and history of lung cancer or hypocalcemia were linked to PE occurrence.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Derrame Pericárdico , Humanos , Derrame Pericárdico/epidemiología , Derrame Pericárdico/inducido químicamente , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Factores de Riesgo , Neoplasias/tratamiento farmacológico , Neoplasias/epidemiología , Anciano , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Tasa de Supervivencia/tendencias , Resultado del Tratamiento
9.
Cancer Lett ; 588: 216809, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38471646

RESUMEN

Human papillomavirus (HPV) is predominantly associated with HPV-related cancers, however, the precise mechanisms underlying the HPV-host epigenetic architectures in HPV carcinogenesis remain elusive. Here, we employed high-throughput chromosome conformation capture (Hi-C) to comprehensively map HPV16/18-host chromatin interactions. Our study identified the transcription factor Sp1 as a pivotal mediator in programming HPV-host interactions. By targeting Sp1, the active histone modifications (H3K27ac, H3K4me1, and H3K4me3) and the HPV-host chromatin interactions are reprogrammed, which leads to the downregulation of oncogenes located near the integration sites in both HPV (E6/E7) and the host genome (KLF5/MYC). Additionally, Sp1 inhibition led to the upregulation of immune checkpoint genes by reprogramming histone modifications in host cells. Notably, humanized patient-derived xenograft (PDX-HuHSC-NSG) models demonstrated that Sp1 inhibition promoted anti-PD-1 immunotherapy via remodeling the tumor immune microenvironment in cervical cancer. Moreover, single-cell transcriptomic analysis validated the enrichment of transcription factor Sp1 in epithelial cells of cervical cancer. In summary, our findings elucidate Sp1 as a key mediator involved in the programming and reprogramming of HPV-host epigenetic architecture. Inhibiting Sp1 with plicamycin may represent a promising therapeutic option for HPV-related carcinoma.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Cromatina/genética , Epigénesis Genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/metabolismo , Virus del Papiloma Humano , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/terapia , Factores de Transcripción/genética , Microambiente Tumoral , Neoplasias del Cuello Uterino/patología
10.
Food Microbiol ; 120: 104475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431321

RESUMEN

Alicyclobacillus acidoterrestris is the major threat to fruit juice for its off-odor producing characteristic. In this study, Pyrococcus furiosus Argonaute (PfAgo), a novel endonuclease with precise DNA cleavage activity, was used for A. acidoterrestrisdetection, termed as PAD. The partially amplified 16 S rRNA gene of A. acidoterrestris can be cleaved by PfAgo activated by a short 5'-phosphorylated single strand DNA, producing a new guide DNA (gDNA). Then, PfAgo was activated by the new gDNA to cut a molecular beacon (MB) with fluorophore-quencher reporter, resulting in the recovery of fluorescence. The fluorescent intensity is positively related with the concentration of A. acidoterrestris. The PAD assay showed excellent specificity and sensitivity as low as 101 CFU/mL, which can be a powerful tool for on-site detection of A. acidoterrestris in fruit juice industry in the future, reducing the economic loss.


Asunto(s)
Alicyclobacillus , Pyrococcus furiosus , Jugos de Frutas y Vegetales , Pyrococcus furiosus/genética , Alicyclobacillus/genética , ADN , Frutas
11.
iScience ; 27(3): 109263, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439957

RESUMEN

Enhancers of polycomb 1 (EPC1) and 2 (EPC2) are involved in multiple biological processes as components of histone acetyltransferases/deacetylase complexes and transcriptional cofactors, and their dysfunction was associated with developmental defects and diseases. However, it remains unknown how their dysfunction induces hematopoietic stem and progenitor cell (HSPC) defects. Here, we show that depletion of EPC1/2 significantly reduced the number of hematopoietic stem and progenitor cells (HSPCs) in the aorta-gonad mesonephros and caudal hematopoietic tissue regions by impairing HSPC proliferation, and consistently downregulated the expression of HSPC genes in K562 cells. This study demonstrates the functions of EPC1/2 in regulating histone H3 acetylation, and in regulating DLST (dihydrolipoamide S-succinyltransferase) via H3 acetylation and cooperating with transcription factors serum response factor and FOXR2 together, and in the subsequent HSPC emergence and proliferation. Our results demonstrate the essential roles of EPC1/2 in regulating H3 acetylation, and DLST as a linkage between EPC1 and EPC2 with mitochondria metabolism, in HSPC emergence and proliferation.

12.
Genes (Basel) ; 15(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38540333

RESUMEN

The soil-borne pathogen Plasmodiophora brassicae is the causal agent of clubroot, a major disease in Chinese cabbage (Brassica rapa ssp. pekinensis). The host's resistance genes often confer immunity to only specific pathotypes and may be rapidly overcome. Identification of novel clubroot resistance (CR) from germplasm sources is necessary. In this study, Bap246 was tested by being crossed with different highly susceptible B. rapa materials and showed recessive resistance to clubroot. An F2 population derived from Bap246 × Bac1344 was used to locate the resistance Quantitative Trait Loci (QTL) by Bulk Segregant Analysis Sequencing (BSA-Seq) and QTL mapping methods. Two QTL on chromosomes A01 (4.67-6.06 Mb) and A08 (10.42-11.43 Mb) were found and named Cr4Ba1.1 and Cr4Ba8.1, respectively. Fifteen and eleven SNP/InDel markers were used to narrow the target regions in the larger F2 population to 4.67-5.17 Mb (A01) and 10.70-10.84 Mb (A08), with 85 and 19 candidate genes, respectively. The phenotypic variation explained (PVE) of the two QTL were 30.97% and 8.65%, respectively. Combined with gene annotation, mutation site analysis, and real-time quantitative polymerase chain reaction (qRT-PCR) analysis, one candidate gene in A08 was identified, namely Bra020861. And an insertion and deletion (InDel) marker (co-segregated) named Crr1-196 was developed based on the gene sequence. Bra013275, Bra013299, Bra013336, Bra013339, Bra013341, and Bra013357 in A01 were the candidate genes that may confer clubroot resistance in Chinese cabbage. The resistance resource and the developed marker will be helpful in Brassica breeding programs.


Asunto(s)
Brassica rapa , Brassica , Plasmodiophorida , Brassica rapa/genética , Plasmodiophorida/genética , Fitomejoramiento , Brassica/genética , Sitios de Carácter Cuantitativo
13.
Plant J ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506334

RESUMEN

Cytochrome P450 proteins (CYPs) play critical roles in plant development and adaptation to fluctuating environments. Previous reports have shown that CYP86A proteins are involved in the biosynthesis of suberin and cutin in Arabidopsis. However, the functions of these proteins in rice remain obscure. In this study, a rice mutant with incomplete male sterility was identified. Cytological analyses revealed that this mutant was defective in anther development. Cloning of the mutant gene indicated that the responsible mutation was on OsCYP86A9. OsMYB80 is a core transcription factor in the regulation of rice anther development. The expression of OsCYP86A9 was abolished in the anther of osmyb80 mutant. In vivo and in vitro experiments showed that OsMYB80 binds to the MYB-binding motifs in OsCYP86A9 promoter region and regulates its expression. Furthermore, the oscyp86a9 mutant exhibited an impaired suberin deposition in the root, and was more susceptible to drought stress. Interestingly, genetic and biochemical analyses revealed that OsCYP86A9 expression was regulated in the root by certain MYB transcription factors other than OsMYB80. Moreover, mutations in the MYB genes that regulate OsCYP86A9 expression in the root did not impair the male fertility of the plant. Taken together, these findings revealed the critical roles of OsCYP86A9 in plant development and proposed that OsCYP86A9 functions in anther development and root suberin formation via two distinct tissue-specific regulatory pathways.

14.
NPJ Vaccines ; 9(1): 50, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424078

RESUMEN

Trivalent oral poliovirus vaccine (tOPV) has been withdrawn and instead an inactivated poliovirus vaccine (IPV) and bivalent type 1 and type 3 OPV (bOPV) sequential immunization schedule has been implemented since 2016, but no immune persistence data are available for this polio vaccination strategy. This study aimed to assess immune persistence following different polio sequential immunization schedules. Venous blood was collected at 24, 36, and 48 months of age from participants who had completed sequential schedules of combined IPV and OPV in phase III clinical trials. The serum neutralizing antibody titers against poliovirus were determined, and the poliovirus-specific antibody-positive rates were evaluated. A total of 1104 participants were enrolled in this study. The positive rates of poliovirus type 1- and type 3-specific antibodies among the sequential immunization groups showed no significant difference at 24, 36, or 48 months of age. The positive rates of poliovirus type 2-specific antibody in the IPV-IPV-tOPV group at all time points were nearly 100%, which was significantly higher than the corresponding rates in other immunization groups (IPV-bOPV-bOPV and IPV-IPV-bOPV). Immunization schedules involving one or two doses of IPV followed by bOPV failed to maintain a high positive rate for poliovirus type 2-specific antibody.

15.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339202

RESUMEN

Vernalization plays a crucial role in the flowering and yield of Chinese cabbage, a process intricately influenced by long non-coding RNAs (lncRNAs). Our research focused on lncFLC1, lncFLC2a, and lncFLC2b, which emerged as key players in this process. These lncRNAs exhibited an inverse expression pattern to the flowering repressor genes FLOWERING LOCUS C 1 (BrFLC1) and FLOWERING LOCUS C 2 (BrFLC2) during vernalization, suggesting a complex regulatory mechanism. Notably, their expression in the shoot apex and leaves was confirmed through in fluorescent in situ hybridization (FISH). Furthermore, when these lncRNAs were overexpressed in Arabidopsis, a noticeable acceleration in flowering was observed, unveiling functional similarities to Arabidopsis's COLD ASSISTED INTRONIC NONCODING RNA (COOLAIR). This resemblance suggests a potentially conserved regulatory mechanism across species. This study not only enhances our understanding of lncRNAs in flowering regulation, but also opens up new possibilities for their application in agricultural practices.


Asunto(s)
Arabidopsis , Brassica , ARN Largo no Codificante , Arabidopsis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Hibridación Fluorescente in Situ , Flores/metabolismo , Brassica/genética , Regulación de la Expresión Génica de las Plantas
16.
Sci Rep ; 14(1): 4547, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402284

RESUMEN

The increasing number of plant mitochondrial DNA genomes (mtDNA) sequenced reveals the extent of transfer from both chloroplast DNA genomes (cpDNA) and nuclear DNA genomes (nDNA). This study created a library and assembled the chloroplast and mitochondrial genomes of the leafy sweet potato better to understand the extent of mitochondrial and chloroplast gene transfer. The full-length chloroplast genome of the leafy sweet potato (OM808940) is 161,387 bp, with 132 genes annotated, including 87 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. The mitochondrial genome (OM808941) was 269,578 bp in length and contained 69 functional genes, including 39 protein-coding genes, 6 rRNA genes, and 24 tRNA genes. 68 SSR loci were found in the leafy sweet potato organelle genome, including 54 in the chloroplast genome and 14 in the mitochondria genome. In the sweet potato mitochondrial genome, most genes have RNA editing sites, and the conversion ratio from hydrophilic amino acids to hydrophobic amino acids is the highest, reaching 47.12%. Horizontal transfer occurs in the sweet potato organelle genome and nuclear genome. 40 mitochondrial genome segments share high homology with 14 chloroplast genome segments, 33 of which may be derived from chloroplast genome horizontal transfer. 171 mitochondrial genome sequences come from the horizontal transfer of nuclear genome. The phylogenetic analysis of organelle genes revealed that the leafy sweet potato was closely related to the tetraploid wild species Ipomoea tabascana and the wild diploid species Ipomoea trifida.


Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Ipomoea batatas , Ipomoea , Ipomoea batatas/genética , Filogenia , Genoma Mitocondrial/genética , Ipomoea/genética , Genoma del Cloroplasto/genética , Cloroplastos/genética , Aminoácidos/genética , ARN de Transferencia/genética
17.
Front Microbiol ; 15: 1337402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384265

RESUMEN

Introduction: Revealing factors and mechanisms in determining species co-existence are crucial to community ecology, but studies using gut microbiota data are still lacking. Methods: Using gut microbiota data of 556 Brandt's voles from 37 treatments in eight experiments, we examined the relationship of species co-occurrence of gut microbiota in Brandt's voles (Lasiopodomys brandtii) with genetic distance (or genetic relatedness), community diversity, and several environmental variables. Results: We found that the species co-occurrence index (a larger index indicates a higher co-occurrence probability) of gut microbiota in Brandt's voles was negatively associated with the genetic distance between paired ASVs and the number of cohabitating voles in the experimental space (a larger number represents more crowding social stress), but positively with Shannon diversity index, grass diets (representing natural foods), and non-physical contact within an experimental space (representing less stress). Discussion: Our study demonstrated that high diversity, close genetic relatedness, and favorable living conditions would benefit species co-occurrence of gut microbiota in hosts. Our results provide novel insights into factors and mechanisms that shape the community structure and function of gut microbiota and highlight the significance of preserving the biodiversity of gut microbiota.

18.
Anal Methods ; 16(10): 1454-1467, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38415741

RESUMEN

Saccharides are not only the basic constituents and nutrients of living organisms, but also participate in various life activities, and play important roles in cell recognition, immune regulation, development, cancer, etc. The analysis of carbohydrates and glycoconjugates is a necessary means to study their transformations and physiological roles in living organisms. Existing detection techniques can hardly meet the requirements for the analysis of carbohydrates and glycoconjugates in complex matrices as they are expensive, involve complex derivatization, and are time-consuming. Nanopore sensing technology, which is amplification-free and label-free, and is a high-throughput process, provides a new solution for the identification and sequencing of carbohydrates and glycoconjugates. This review highlights recent advances in novel nanopore-based single-molecule sensing technologies for the detection of carbohydrates and glycoconjugates and discusses the advantages and challenges of nanopore sensing technologies. Finally, current issues and future perspectives are discussed with the aim of improving the performance of nanopores in complex media diagnostic applications, as well as providing a new direction for the quantification of glycan chains and the study of glycan chain properties and functions.


Asunto(s)
Nanoporos , Glicoconjugados , Carbohidratos , Nanotecnología/métodos , Polisacáridos
19.
Environ Sci Pollut Res Int ; 31(13): 19148-19165, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379043

RESUMEN

Coal-fired power plants (CFPPs) are one of the most significant sources of mercury (Hg) emissions certified by the Minamata Convention, which has attracted much attention in recent years. In this study, we used the Web of Science and CiteSpace to analyze the knowledge structure of this field from 2000 to 2022 and then reviewed it systematically. The field of Hg emissions from coal-fired power plants has developed steadily. The research hotspots can be divided into three categories: (1) emission characterization research focused on speciation changes and emission calculations; (2) emission control research focused on control technologies; (3) environmental impact research focused on environmental pollution and health risk. In conclusion, using an oxygen-rich atmosphere for combustion and installing high-efficiency air pollution control devices (APCDs) helped to reduce the formation of Hg0. The average Hg removal rates of APCDs and modified adsorbents after ultra-low emission retrofit were distributed in the range of 82-93% and 41-100%, respectively. The risk level of Hg in combustion by-products was highest in desulfurization sludge (RAC > 10%) followed by fly ash (10% < RAC < 30%) and desulfurization gypsum (1% < RAC < 10%). Additionally, we found that the implementation of pollution and carbon reduction policies in China had reduced Hg emissions from CFPPs by 45% from 2007 to 2015, increased the efficiency of Hg removal from APCDs to a maximum of 96%, and reduced global transport and health risk of atmospheric Hg. The results conjunctively achieved by CiteSpace, and the literature review will enhance understanding of CFPP Hg emission research and provide new perspectives for future research.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/análisis , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Centrales Eléctricas , China , Bibliometría
20.
Analyst ; 149(5): 1350-1363, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38312056

RESUMEN

Single cells and their dynamic behavior are closely related to biological research. Monitoring their dynamic behavior is of great significance for disease prevention. How to achieve rapid and non-destructive monitoring of single cells is a major issue that needs to be solved urgently. As an emerging technology, nanopores have been proven to enable non-destructive and label-free detection of single cells. The structural properties of nanopores enable a high degree of sensitivity and accuracy during analysis. In this article, we summarize and classify the different types of solid-state nanopores that can be used for single-cell detection and illustrate their specific applications depending on the size of the analyte. In addition, their research progress in material transport and microenvironment monitoring is also highlighted. Finally, a brief summary of existing research challenges and future trends in nanopore single-cell analysis is tentatively provided.


Asunto(s)
Nanoporos , Nanotecnología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA