Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Neuroanat ; 18: 1389067, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741760

RESUMEN

Introduction: While the fovea on the retina covers only a small region of the visual field, a significant portion of the visual cortex is dedicated to processing information from the fovea being a critical center for object recognition, motion control, and visually guided attention. Despite its importance, prior functional imaging studies in awake monkeys often focused on the parafoveal visual field, potentially leading to inaccuracies in understanding the brain structure underlying function. Methods: In this study, our aim is to unveil the neuronal connectivity and topography in the foveal visual cortex in comparison to the parafoveal visual cortex. Using four different types of retrograde tracers, we selectively injected them into the striate cortex (V1) or V4, encompassing the regions between the fovea and parafovea. Results: V1 and V4 exhibited intense mutual connectivity in the foveal visual field, in contrast to the parafoveal visual field, possibly due to the absence of V3 in the foveal visual field. While previous live brain imaging studies failed to reveal retinotopy in the foveal visual fields, our results indicate that the foveal visual fields have continuous topographic connectivity across V1 through V4, as well as the parafoveal visual fields. Although a simple extension of the retinotopic isoeccentricity maps from V1 to V4 has been suggested from previous fMRI studies, our study demonstrated that V3 and V4 possess gradually smaller topographic maps compared to V1 and V2. Feedback projections to foveal V1 primarily originate from the infragranular layers of foveal V2 and V4, while feedforward projections to foveal V4 arise from both supragranular and infragranular layers of foveal V1 and V2, consistent with previous findings in the parafoveal visual fields. Discussion: This study provides valuable insights into the connectivity of the foveal visual cortex, which was ambiguous in previous imaging studies.

2.
Dalton Trans ; 53(1): 162-170, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38018516

RESUMEN

The energy-intensive processes for the industrial production of ammonia necessitates the development of new methods to be proposed that will aid in reducing the global energy consumption. Specifically, the electrocatalytic nitrate reduction reaction (NO3RR) to produce ammonia is more thermodynamically feasible than the electrocatalytic nitrogen reduction reaction (NRR). However, it is hindered by a low catalytic activity due to its complex reaction pathways. Herein, we synthesized a novel electrocatalyst, RuOx-Co3O4 nanoparticles, with abundant interfaces, which exhibited an enhanced catalytic activity for efficient ammonia synthesis. This catalyst delivered a partial current density of 65.8 mA cm-2 for NH3 production, a faradaic efficiency (FE) of 89.7%, and a superior ammonia yield rate of up to 210.5 µmol h-1 cm-2 at -0.6 V vs. RHE. X-ray photoelectron and Raman spectroscopy revealed that the formed interfacial Ru-O-Co bond can decorate the electronic structures of the active sites and accelerate the absorption of NO3-, thus promoting the production of ammonia.

3.
Cereb Cortex ; 33(16): 9599-9615, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37415460

RESUMEN

We previously revealed the presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of pigmented rats. On the other hand, previous studies have shown that the ipsilateral-eye domains of the dorsal lateral geniculate nucleus (dLGN) are segregated into a handful of patches in pigmented rats. To investigate the three-dimensional (3D) topography of the eye-specific patches of the dLGN and its relationship with ODCs, we injected different tracers into the right and left eyes and examined strain difference, development, and plasticity of the patches. Furthermore, we applied the tissue clearing technique to reveal the 3D morphology of the LGN and were able to observe entire retinotopic map of the rat dLGN at a certain angle. Our results show that the ipsilateral domains of the dLGN appear mesh-like at any angle and are developed at around time of eye-opening. Their development was moderately affected by abnormal visual experience, but the patch formation was not disrupted. In albino Wistar rats, ipsilateral patches were observed in the dLGN, but they were much fewer, especially near the central visual field. These results provide insights into how ipsilateral patches of the dLGN arise, and how the geniculo-cortical arrangement is different between rodents and primates.


Asunto(s)
Cuerpos Geniculados , Corteza Visual , Ratas , Animales , Cuerpos Geniculados/anatomía & histología , Corteza Visual/anatomía & histología , Vías Visuales/anatomía & histología , Campos Visuales , Ratas Wistar
4.
Cereb Cortex ; 33(16): 9450-9464, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37415464

RESUMEN

Despite previous agreement of the absence of cortical column structure in the rodent visual cortex, we have recently revealed a presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of adult Long-Evans rats. In this study, we deepened understanding of characteristics of rat ODCs. We found that this structure was conserved in Brown Norway rats, but not in albino rats; therefore, it could be a structure generally present in pigmented wild rats. Activity-dependent gene expression indicated that maturation of eye-dominant patches takes more than 2 weeks after eye-opening, and this process is visual experience dependent. Monocular deprivation during classical critical period strongly influenced size of ODCs, shifting ocular dominance from the deprived eye to the opened eye. On the other hand, transneuronal anterograde tracer showed a presence of eye-dominant patchy innervation from the ipsilateral V1 even before eye-opening, suggesting the presence of visual activity-independent genetic components of developing ODCs. Pigmented C57BL/6J mice also showed minor clusters of ocular dominance neurons. These results provide insights into how visual experience-dependent and experience-independent components both contribute to develop cortical columns during early postnatal stages, and indicate that rats and mice can be excellent models to study them.


Asunto(s)
Predominio Ocular , Corteza Visual , Animales , Ratas , Ratones , Ratas Long-Evans , Ratones Endogámicos C57BL , Corteza Visual/fisiología , Neuronas/fisiología
5.
Sensors (Basel) ; 22(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36236670

RESUMEN

In order to increase the accuracy of ocean monitoring, this paper proposes an improved adaptive median filtering algorithm based on the tangential interference ratio to better suppress marine radar co-channel interference. To solve the problem that co-channel interference reduces the accuracy of radar images' parameter extraction, this paper constructs a tangential interference ratio model based on the improved Laplace operator, which is used to describe the ratio of co-channel interference along the antenna rotation direction in the original radar image. Based on the idea of between-class variance, the tangential interference ratio threshold is selected to divide co-channel interference into high-ratio regions and low ones. Moreover, an improved adaptive median filter is used to process regions of high ratio based on the median of sub-windows, while that of low-ratio regions is processed by the adaptive median filter based on the median of current windows. Radar-measured data from Bohai Bay, China are used for algorithm validation and experimental results show that the proposed filtering algorithm performs better than the adaptive median filtering algorithm.

6.
Neuroreport ; 33(12): 543-547, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35882010

RESUMEN

Albino people are known to have vision deficit. Albino animals are shown to have abnormal connectivity and malformation of the visual system. However, not many studies have revealed visual impairment of albino animals in the level of perception. To link anatomical abnormality and perceptual visual impairment of albinism, we compared the perceptual vision between the pigmented Long-Evans and the albino Wistar rats. We used the slow angled-descent forepaw grasping (SLAG) test. We hanged the rats in the air by their tails and slowly moved them around a safety bar so that they could see it. When the rats recognized the bar and try to grab it to escape, we counted the trial as 'positive', and we measured positive rates. We also measured the distance between the bar and their whiskers during the rats' initial grasping action, and evaluated type of action at the first contact to the bar. The positive-action rate in the Long-Evans rat group showed significantly higher than the Wistar rat group (0.85 ± 0.047, n = 10, vs. 0.29 ± 0.043, n = 10; P < 0.0001). Besides, when the action was positive, the distance between the bar and their whiskers was longer in the Long-Evans rat group than that in the Wistar rat group (117 ± 5.3 mm vs. 58.8 ± 4.6 mm; P < 0.0001). The Long-Evans rats grasped the bar more precisely than the Wistar rats. The pigmented Long-Evans rats have much better visual perception than the albino Wistar rats.


Asunto(s)
Albinismo , Ratas , Animales , Ratas Long-Evans , Ratas Wistar , Percepción Visual , Trastornos de la Visión
7.
Cereb Cortex ; 31(8): 3788-3803, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33772553

RESUMEN

The lateral and central lateral inferior pulvinar (PL/PIcl) of primates has been implicated in playing an important role in visual processing, but its physiological and anatomical characteristics remain to be elucidated. It has been suggested that there are two complete visuotopic maps in the PL/PIcl, each of which sends afferents into V2 and V4 in primates. Given that functionally distinct thin and thick stripes of V2 both receive inputs from the PL/PIcl, this raises the possibility of a presence of parallel segregated pathways within the PL/PIcl. To address this question, we selectively injected three types of retrograde tracers (CTB-488, CTB-555, and BDA) into thin or thick stripes in V2 and examined labeling in the PL/PIcl in macaques. As a result, we found that every cluster of retrograde labeling in the PL/PIcl included all three types of signals next to each other, suggesting that thin stripe- and thick stripe-projecting compartments are not segregated into domains. Unexpectedly, we found at least five topographically organized retrograde labeling clusters in the PL/PIcl, indicating the presence of more than two V2-projecting maps. Our results suggest that the PL/PIcl exhibits greater compartmentalization than previously thought. They may be functionally similar but participate in multiple cortico-pulvinar-cortical loops.


Asunto(s)
Pulvinar/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Mapeo Encefálico , Corteza Cerebral/fisiología , Femenino , Lateralidad Funcional/fisiología , Inmunohistoquímica , Macaca mulatta , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Neuroimagen , Pulvinar/anatomía & histología , Tálamo/fisiología , Corteza Visual/anatomía & histología , Vías Visuales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA