Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 473: 134665, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776813

RESUMEN

In this study, the behavior of metal cations and organic matter during polystyrene nanoplastics (PSNP) aggregation was explored combing experimental measurements and molecular dynamics simulation. The results indicated that coexisting organic matter, including organic pollutants and humic acid (HA), play a complex role in determining PSNP aggregation. The representative organic pollutant, bisphenol A, exhibited competitive behavior with HA during heteroaggregation, and the heteroaggregation between HA and PSNP was impaired by bisphenol A. The bridging effect of metal ions in aggregation is related to their interaction strength with functional groups, binding affinity with water molecules, and concentration. In particular, Mg2+ interacts more strongly with oxygen-containing functional groups on PSNP than Ca2+. However, Mg2+ is more favorable for binding with water and is therefore not as effective as Ca2+ for destabilizing PSNP. Compared with Ca2+ and Mg2+, Na+ showed a weaker association with PSNP; however, it still showed a significant effect in determining the aggregation behavior of PSNP owing to its high concentration in seawater. Overall, we provided a molecular-level understanding of PSNP aggregation and deepened our understanding of the fate of nanoplastics.

2.
Sci Total Environ ; 905: 167175, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730023

RESUMEN

Microplastics (MPs) may interact with background organic substances (including natural organic matter and organic pollutants) after entering the aquatic environment and affect their original binding. Thus, the interaction of MPs with background organic substances (i.e., humic acid (HA), polychlorinated biphenyls (PCBs), and hydroxy PCBs) were elucidated. According to the results, PCB and hydroxy PCB displayed a strong propensity to adhere to HAs in the absence of MPs. However, the PCBs and hydroxy PCBs that were initially bound to HAs shifted from HAs to MPs in the presence of MPs. Further analysis demonstrated that this transfer was dominated by van der Waals interactions, with hydrogen bond interactions as an additional driving force. Upon the interaction, large MPs-HA-PCB/ hydroxy PCB aggregates with MPs as the core and HAs as the outermost layer were formed. Significant changes in the properties of background organic matter, including the distribution of PCB/hydroxy PCB around HA, diffusion coefficient, and hydrogen bond networks in the HA-PCB/ hydroxy PCB domains, occurred during the MP-HA-PCB/hydroxy PCB interaction. These results provide molecular-level evidence that the intrusion of MPs changes the binding preference of background organic pollutants and can lead to a redistribution of background organic pollutants.

3.
Phys Rev Lett ; 130(18): 186201, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37204911

RESUMEN

We investigate the quantum anomalous Hall plateau transition in the presence of independent out-of-plane and in-plane magnetic fields. The perpendicular coercive field, zero Hall plateau width, and peak resistance value can all be systematically controlled by the in-plane magnetic field. The traces taken at various fields almost collapse into a single curve when the field vector is renormalized to an angle as a geometric parameter. These results can be explained consistently by the competition between magnetic anisotropy and in-plane Zeeman field, and the close relationship between quantum transport and magnetic domain structure. The accurate control of zero Hall plateau facilitates the search for chiral Majorana modes based on the quantum anomalous Hall system in proximity to a superconductor.

4.
Phys Rev Lett ; 128(7): 076803, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35244449

RESUMEN

Hybrid semiconductor-superconductor nanowires are predicted to host Majorana zero modes that induce zero-bias peaks (ZBPs) in tunneling conductance. ZBPs alone, however, are not sufficient evidence due to the ubiquitous presence of Andreev bound states. Here, we implement a strongly resistive normal lead in InAs-Al nanowire devices and show that most of the expected Andreev bound state-induced ZBPs can be suppressed, a phenomenon known as environmental Coulomb blockade. Our result is the first experimental demonstration of this dissipative interaction effect on Andreev bound states and can serve as a possible filter to narrow down the ZBP phase diagram in future Majorana searches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA