Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 15(16): 8325-8344, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37616061

RESUMEN

Bladder cancer (BC) is a common urologic tumor with a high recurrence rate. Cuproptosis and long noncoding RNAs (lncRNAs) have demonstrated essential roles in the tumorigenesis of many malignancies. Nevertheless, the prognostic value of cuproptosis-related lncRNA (CRLs) in BC is still unclear. The public data used for this study were acquired from the Cancer Genome Atlas database. A comprehensive exploration of the expression profile, mutation, co-expression, and enrichment analyses of cuproptosis-related genes was performed. A total of 466 CRLs were identified using Pearson's correlation analysis. 16 prognostic CRLs were then retained by univariate Cox regression. Unsupervised clustering divided the patients into two clusters with diverse survival outcomes. The signature consists of 7 CRLs was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression analyses. Survival curves and receiver operating characteristics showed the prognostic signature possessed good predictive value, which was validated in the testing and entire sets. The reliability and stability of our signature were further confirmed by stratified analysis. Additionally, the signature-based risk score was confirmed as an independent prognostic factor. Gene set enrichment analysis showed molecular alteration in the high-risk group was closely associated with cancer. We then developed the clinical nomogram using independent prognostic indicators. Notably, the infiltration of immune cells and expression of immune checkpoints were higher in the high-risk group, suggesting that they may benefit more from immunotherapy. In summary, the prognostic signature might effectively predict the prognosis and provide new insight into the clinical treatment of BC patients.


Asunto(s)
Apoptosis , ARN Largo no Codificante , Neoplasias de la Vejiga Urinaria , Humanos , Carcinogénesis , Transformación Celular Neoplásica , Reproducibilidad de los Resultados , Cobre
2.
Macromol Rapid Commun ; 44(19): e2300268, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37402482

RESUMEN

Photodynamic therapy (PDT) has emerged as a promising cancer treatment modality; however, its therapeutic efficacy is greatly limited by tumor hypoxia. In this study, a metal-organic framework (MOF)-based hydrogel (MOF Gel) system that synergistically combines PDT with the supply of oxygen is designed. Porphyrin-based Zr-MOF nanoparticles are synthesized as the photosensitizer. MnO2 is decorated onto the surface of the MOF, which can effectively convert H2O2 into oxygen. Simultaneously, the incorporation of MnO2 -decorated MOF (MnP NPs) into a chitosan hydrogel (MnP Gel) serves to enhance its stability and retention at the tumor site. The results show that this integrated approach significantly improves tumor inhibition efficiency by relieving tumor hypoxia and enhancing PDT. Overall, the findings underscore the potential for employing nano-MOF-based hydrogel systems as promising agents for cancer therapy, thus advancing the application of multifunctional MOFs in cancer treatment.

3.
Invest Ophthalmol Vis Sci ; 64(7): 21, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37310354

RESUMEN

Purpose: The purpose of this study was to investigate the role of lncRNA H19 in epithelial-mesenchymal transition (EMT) and its molecular mechanism in fibrotic cataracts. Methods: TGF-ß2-induced EMT was induced in human lens epithelial cell line (HLECs) and rat lens explants to mimic posterior capsular opacification (PCO) in vitro and in vivo. Anterior subcapsular cataract (ASC) was induced in C57BL/6J mice. The long noncoding RNA (lncRNA) H19 (H19) expression was detected by RT-qPCR. Whole-mount staining of lens anterior capsule was used to detect α-SMA and vimentin. Lentiviruses carrying shRNA or H19 vector were transfected in HLECs to knockdown or overexpress H19. Cell migration and proliferation were characterized by EdU, Transwell, and scratch assay. EMT level was detected by Western blotting and immunofluorescence. The rAAV2 carrying mouse H19 shRNA was injected into ASC model mouse anterior chambers as a gene therapy to determine its therapeutic potential. Results: PCO and ASC models were built successfully. We found H19 upregulation in PCO and ASC models in vivo and in vitro. Overexpression of H19 by lentivirus transfection increased cell migration, proliferation, and EMT. In addition, H19 knockdown by lentivirus suppressed cell migration, proliferation, and EMT levels in HLECs. Moreover, transfection of rAAV2 H19 shRNA alleviated fibrotic area in ASC mouse lens anterior capsules. Conclusions: Excessive H19 participates in lens fibrosis. Overexpression of H19 increases, whereas knockdown of H19 ameliorates HLECs migration, proliferation, and EMT. These results demonstrate H19 might be a potential target for fibrotic cataracts.


Asunto(s)
Catarata , ARN Largo no Codificante , Animales , Humanos , Ratones , Ratas , Catarata/genética , Catarata/patología , Células Epiteliales/metabolismo , Lentivirus , Ratones Endogámicos C57BL , ARN Largo no Codificante/genética , ARN Interferente Pequeño , Fibrosis/genética , Fibrosis/patología , Transición Epitelial-Mesenquimal/genética
4.
Int J Oncol ; 61(3)2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35920182

RESUMEN

Advanced gallbladder cancer (GBC) is one of the most malignant of all types of biliary tract cancers that is associated with poor prognosis and high mortality. Accumulating evidence suggest that the B7 family of proteins serve an essential role in various types of cancers, including GBC. However, the potential function and regulatory mechanism of human endogenous retrovirus­H long terminal repeat­associating protein 2 (HHLA2; also known as B7­H7 or B7H5) in GBC remain poorly understood. In the present study, immunohistochemistry was used to examine the expression pattern of HHLA2 in samples from 89 patients with GBC. The possible association between HHLA2 expression and the clinicopathological parameters, including prognosis, were then assessed. Using lentiviruses, overexpression of HHLA2 plasmid or short­hairpin RNA (shRNA) of HHLA2 were transfected into GBC­SD cells to overexpress or knock down HHLA2 expression, respectively. The effects of HHLA2 overexpression and knockdown on the epithelial­mesenchymal transition (EMT) process on GBC­SD cells were measured by the western blotting and immunofluorescence staining of collagen I, N­cadherin, E­cadherin, vimentin and α­SMA. By contrast, changes in cell proliferation were measured using EdU assay. Cell invasion and migration were assessed using Transwell and wound­healing assays, respectively. In addition, a xenograft mouse model was established to evaluate the tumorigenic ability of the GBC cell line in vivo after stable transfection with lentivirus for HHLA2 overexpression or shRNA for HHLA2 knockdown. The regulatory relationships among TGF­ß1, long non­coding RNA (lncRNA) H19 (H19) and HHLA2 were then investigated. The mRNA expression of lncRNA H19 were assessed using reverse transcription­quantitative PCR, whereas the expression levels of HHLA2 were detected by western blotting and immunofluorescence staining. HHLA2 expression was found to gradually increase as the stages of the GBC samples become more advanced. In addition, the expression level of HHLA2 was calculated to be positively associated with the Nevin stage, American Joint Committee on Cancer stage, tumor invasion and regional lymph node metastasis but was negatively associated with the overall patient survival (OS). In vitro experiments demonstrated that overexpression of HHLA2 promoted GBC migration, invasion, proliferation and EMT, whereas in vivo experiments found a promoting role of HHLA2 overexpression on GBC tumor growth. After transfection with lentiviruses encoding the overexpression plasmid of lncRNA H19, GBC migration, invasion, proliferation and EMT were increased. By contrast, knocking down HHLA2 expression suppressed TGF­ß1­ or lncRNA H19 overexpression­induced GBC migration, invasion, proliferation and EMT. In addition, HHLA2 knockdown significantly reduced the sizes of the GBC tumors in vivo. These results suggest that HHLA2 overexpression can promote GBC progression. Conversely, ablation of HHLA2 expression inhibited both TGF­ß1­ and lncRNA H19­induced GBC progression, suggesting that HHLA2 is a potential therapeutic target for this disease.


Asunto(s)
Neoplasias de la Vesícula Biliar , MicroARNs , ARN Largo no Codificante , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño , Factor de Crecimiento Transformador beta1/genética
5.
Cancer Manag Res ; 13: 6673-6687, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34471382

RESUMEN

PURPOSE: Clear cell renal cell carcinoma (ccRCC) is highly heterogeneous and is one of the most lethal types of cancer within the urinary system. Aberrant expression of 5-methylcytosine (m5C) RNA methylation regulators has been shown to result in occurrence and progression of tumors. However, the role of these regulators in ccRCC remains unclear. MATERIALS AND METHODS: We extracted RNA sequencing expression data with corresponding clinical information of patients with ccRCC from The Cancer Genome Atlas (TCGA) database. We then compared the expression profiles of m5C RNA methylation regulators between normal and ccRCC tissues, and determined different subtypes through consensus clustering analysis. In addition, we constructed a prognostic signature and evaluated it using a range of bioinformatics approaches. The expression of signature-related genes was subsequently verified in the clinical samples using qRT-PCR. RESULTS: We identified 12 differentially expressed m5C RNA methylation regulators between cancer and normal control samples. Two clusters of patients with ccRCC and diverse clinicopathological characteristics and prognoses were then determined through consensus clustering analysis. Functional annotations revealed that m5C RNA regulators were significantly correlated with the ccRCC progression. Moreover, we constructed a four-gene risk score signature (comprised of NOP2, NSUN4, NSUN6, and TET2) and divided the patients with ccRCC into high- and low-risk groups based on the median risk score. The risk score was associated with clinicopathological features and was an independent prognostic indicator of ccRCC. Our stratified analysis results suggest that the signature has high prognostic value. Based on qRT-PCR results, the NOP2 and NSUN4 mRNA expressions were higher and those of NSUN6 and TET2 were lower in ccRCC tissues than in normal tissues. CONCLUSION: Our results demonstrate that m5C RNA methylation regulators may affect ccRCC progression and could be exploited for diagnostic and prognostic purposes.

6.
BMC Infect Dis ; 21(1): 380, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892637

RESUMEN

BACKGROUND: Brain abscesses caused by Nocardia farcinica are rare, and mostly occur in immunocompromised individuals. Rapid and accurate diagnosis of nocardiosis is challenging. Due to the inadequate performance of conventional diagnostic methods for Nocardia infection, metagenomics next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) has the potential to improve the diagnosis intracranial nocardiosis. CASE PRESENTATION: We report a case of 50-year-old man with brain abscess caused by Nocardia farcinica. The patient had a idiopathic thrombocytopenic purpura complication that required long-term methylprednisolone administration. His chest image showed multiple lesions, which had been misdiagnosed as lung cancer, and his head image showed multiple intracranial metastases. No pathogen was detected in routine examinations including blood culture, sputum culture and traditional culture methods of cerebrospinal fluid. In order to accurately identify the pathogen, mNGS was used to detect Nocardia in CSF. Although the patient's condition improved after using sensitive antibiotics, he transferred to the local hospital for treatment because of many complicated diseases and family financial limitations. CONCLUSION: This case highlights the value of mNGS in the diagnosis of Nocardia brain abscess, and emphasizes the inadequate sensitivity of conventional diagnostic methods for Nocardia infection. Using mNGS can facilitate early and accurate detection of Norcadia-associated of meningitis in immunocompromised patients, thereby reducing unnecessary use of antibiotics and reducing mortality of the disease.


Asunto(s)
Absceso Encefálico/complicaciones , Absceso Encefálico/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Nocardiosis/complicaciones , Nocardiosis/diagnóstico , Nocardia/genética , Púrpura Trombocitopénica Idiopática/complicaciones , Púrpura Trombocitopénica Idiopática/diagnóstico , Antibacterianos/uso terapéutico , Absceso Encefálico/líquido cefalorraquídeo , Absceso Encefálico/tratamiento farmacológico , Humanos , Huésped Inmunocomprometido , Masculino , Metilprednisolona/uso terapéutico , Persona de Mediana Edad , Nocardiosis/líquido cefalorraquídeo , Nocardiosis/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/líquido cefalorraquídeo , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Resultado del Tratamiento
7.
Curr Eye Res ; 46(8): 1137-1147, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33327804

RESUMEN

MATERIALS AND METHODS: LECs were cultured and induced with TGF-ß2 (10 ng/mL). SiRNA against MALAT1 (Si-MALAT1) was transfected into LECs to knockdown the expression of MALAT1. To overexpress or knockdown miR-204-5p, miR-204-5p mimics (miR-204-5p mimics) and anti-miR-204-5p (miR-204-5p inhibitor) were transfected into LECs. We used RNA FISH to identify the location of MALAT1. RNA levels of MALAT1 and miR-204-5p were analyzed by RT-qPCR. Additionally, target protein levels of Smad4, epithelial differentiation and mesenchymal markers were analyzed with Western blot. We employed EdU Labeling to measured cell proliferation and performed Transwell Assay to analyze the cell migration. Dual-luciferase reporter assays in LECs were conducted to verify whether miRNA-204-5p was negatively regulated by MALAT1 and Smad4 was a direct target of miR-204-5p. RESULTS: The expression of MALAT1 was upregulated in PCO specimens. MALAT1 was overexpressed in TGF-ß2 induced LECs, and the knockdown of MALAT1 could attenuate TGF-ß2 induced EMT. Besides, the upregulation of MALAT1 was correlated with the downregulation of miR-204-5p and upregulation of Smad4. Importantly, MALAT1 was revealed to be located in the cytoplasm of LECs. Furthermore, luciferase reporter assays confirmed that MALAT1 could negatively regulate the expression of miR-204-5p and then regulate its direct target Smad4. Finally, the knockdown of MALAT1 could inhibit the EMT, proliferation, and migration of LECs; however, those can be reversed by anti-miR-204-5p. CONCLUSIONS: Our findings reveal that MALAT1 may regulate EMT, proliferation, and migration of LECs as a ceRNA by "sponging" miR-204-5p and targeting Smad4, and serve as a promising therapeutic target in preventing PCO.


Asunto(s)
Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Regulación de la Expresión Génica/fisiología , Cristalino/citología , MicroARNs/genética , ARN Largo no Codificante/genética , Proteína Smad4/genética , Western Blotting , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Vectores Genéticos , Humanos , Hibridación Fluorescente in Situ , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección , Factor de Crecimiento Transformador beta2/farmacología
8.
J Immunol Res ; 2018: 7213760, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967801

RESUMEN

Abdominal aortic aneurysm (AAA), a deadly vascular disease in human, is a chronic degenerative process of the abdominal aorta. In this process, inflammatory responses and immune system work efficiently by inflammatory cell attraction, proinflammatory factor secretion and subsequently MMP upregulation. Previous studies have demonstrated various inflammatory cell types in AAA of human and animals. The majority of cells, such as macrophages, CD4+ T cells, and B cells, play an important role in the diseased aortic wall through phenotypic modulation. Furthermore, immunoglobulins also greatly affect the functions and differentiation of immune cells in AAA. Recent evidence suggests that innate immune system, especially Toll-like receptors, chemokine receptors, and complements are involved in the progression of AAAs. We discussed the innate immune system, inflammatory cells, immunoglobulins, immune-mediated mechanisms, and key cytokines in the pathogenesis of AAA and particularly emphasis on a further trend and application of these interventions. This current understanding may offer new insights into the role of inflammation and immune response in AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal/etiología , Aneurisma de la Aorta Abdominal/metabolismo , Inmunidad , Inmunomodulación , Inflamación/complicaciones , Inflamación/inmunología , Animales , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/terapia , Citocinas/metabolismo , Humanos , Inmunidad Innata , Inmunoglobulinas/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Terapia Molecular Dirigida , Receptores Toll-Like/metabolismo
9.
Front Microbiol ; 9: 1053, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29875758

RESUMEN

Xiaoqu is a traditional fermentation starter that is used for Chinese liquor production. Although microorganisms in the starters are closely associated with the quality and flavor of liquor, knowledge of the microbiota in xiaoqu is still far from complete, let alone the starters produced by new processes. Here, Illumina MiSeq high-throughput sequencing was applied to study bacterial composition in three types of xiaoqu used in Cantonese soybean-flavor (Chi-flavor) liquor, namely two traditional starters (Jiu Bing and Bing Wan) and a Round-Koji-maker starter (San qu) produced by the automatic starter-making disk machine. The results showed bacterial diversity in traditional starters was similar and higher than that in the Round-Koji-maker starter. Lactobacillus and Pediococcus were the dominant genera in all starters, while other different dominant genera also existed in different starters, which were Weissella, Acetobacter, and Gluconobacter for Jiu Bing, Weissella for Bing Wan, and Bacillus, Acetobacter, Acinetobacter and Klebsiella for San qu, respectively. Meanwhile, Cytophagaceae, one particular microbial family, and some pathogens including Klebsiella, Cronobacter, and Enterobacter were also found in San qu, indicating the automatic starter-making disk machine should be ameliorated before applied into industrial production. These results enriched our knowledge on xiaoqu-related microorganisms and might be helpful in industrial Chi-flavor liquor production and the development of fermentation technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA