Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38891541

RESUMEN

Hydrogel-based flexible electronic devices have great potential in human motion monitoring, electronic skins, and human-computer interaction applications; hence, the efficient preparation of highly sensitive hydrogel-based flexible sensors is important. In the present work, the ultrafast polymerization of a hydrogel (1-3 min) was achieved by constructing a tannic acid (TA)-Fe3+ dynamic redox system, which endowed the hydrogel with good adhesion performance (the adhesion strength in wood was 17.646 kPa). In addition, the uniform dispersal ensured by incorporating polydopamine-decorated polypyrrole (PPy@PDA) into the hydrogel matrix significantly improved the hydrogel's stretching ability (575.082%). The as-prepared PAM/CS/PPy@PDA/TA hydrogel-based flexible sensor had a high-fidelity low detection limit (strain = 1%), high sensitivity at small strains (GF = 5.311 at strain = 0-8%), and fast response time (0.33 s) and recovery time (0.25 s), and it was reliably applied to accurate human motion monitoring and handwriting recognition. The PAM/CS/PPy@PDA/TA hydrogel opens new horizons for wearable electronic devices, electronic skins, and human-computer interaction applications.

2.
Plant Biotechnol J ; 22(2): 445-459, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37856327

RESUMEN

Yellow-seed is widely accepted as a good-quality trait in Brassica crops. Previous studies have shown that the flavonoid biosynthesis pathway is essential for the development of seed colour, but its function in Brassica napus, an important oil crop, is poorly understood. To systematically explore the gene functions of the flavonoid biosynthesis pathway in rapeseed, several representative TRANSPARENT TESTA (TT) genes, including three structural genes (BnaTT7, BnaTT18, BnaTT10), two regulatory genes (BnaTT1, BnaTT2) and a transporter (BnaTT12), were selected for targeted mutation by CRISPR/Cas9 in the present study. Seed coat colour, lignin content, seed quality and yield-related traits were investigated in these Bnatt mutants together with Bnatt8 generated previously. These Bnatt mutants produced seeds with an elevated seed oil content and decreased pigment and lignin accumulation in the seed coat without any serious defects in the yield-related traits. In addition, the fatty acid (FA) composition was also altered to different degrees, i.e., decreased oleic acid and increased linoleic acid and α-linolenic acid, in all Bnatt mutants except Bnatt18. Furthermore, gene expression analysis revealed that most of BnaTT mutations resulted in the down-regulation of key genes related to flavonoid and lignin synthesis, and the up-regulation of key genes related to lipid synthesis and oil body formation, which may contribute to the phenotype. Collectively, our study generated valuable resources for breeding programs, and more importantly demonstrated the functional divergence and overlap of flavonoid biosynthesis pathway genes in seed coat colour, oil content and FA composition of rapeseed.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Ácidos Grasos/metabolismo , Lignina/metabolismo , Color , Fitomejoramiento , Mutagénesis , Flavonoides/metabolismo , Semillas/genética , Semillas/metabolismo
3.
Front Plant Sci ; 14: 1042430, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866373

RESUMEN

The Arabidopsis homeodomain transcription factor SHOOT MERISTEMLESS (STM) is crucial for shoot apical meristem (SAM) function, which cooperates with CLAVATA3 (CLV3)/WUSCHEL (WUS) feedback regulation loops to maintain the homeostasis of stem cells in SAM. STM also interacts with the boundary genes to regulate the tissue boundary formation. However, there are still few studies on the function of STM in Brassica napus, an important oil crop. There are two homologs of STM in B. napus (BnaA09g13310D and BnaC09g13580D). In the present study, CRISPR/Cas9 technology was employed to create the stable site-directed single and double mutants of the BnaSTM genes in B. napus. The absence of SAM could be observed only in the BnaSTM double mutants at the mature embryo of seed, indicating that the redundant roles of BnaA09.STM and BnaC09.STM are vital for regulating SAM development. However, different from Arabidopsis, the SAM gradually recovered on the third day after seed germination in Bnastm double mutants, resulting in delayed true leaves development but normal late vegetative and reproductive growth in B. napus. The Bnastm double mutant displayed a fused cotyledon petiole phenotype at the seedling stage, which was similar but not identical to the Atstm in Arabidopsis. Further, transcriptome analysis showed that targeted mutation of BnaSTM caused significant changes for genes involved in the SAM boundary formation (CUC2, CUC3, LBDs). In addition, Bnastm also caused significant changes of a sets of genes related to organogenesis. Our findings reveal that the BnaSTM plays an important yet distinct role during SAM maintenance as compared to Arabidopsis.

4.
Front Plant Sci ; 13: 801456, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222464

RESUMEN

The diversity of petal and leaf color can improve the ornamental value of rapeseed and promote the development of agriculture and tourism. The two copies of carotenoid isomerase gene (BnaCRTISO) in Brassica napus (BnaA09.CRTISO and BnaC08.CRTISO) was edited using the CRISPR/Cas9 system in the present study. The mutation phenotype of creamy white petals and yellowish leaves could be recovered only in targeted mutants of both BnaCRTISO functional copies, indicating that the redundant roles of BnaA09.CRTISO and BnaC08.CRTISO are vital for the regulation of petal and leaf color. The carotenoid content in the petals and leaves of the BnaCRTISO double mutant was significantly reduced. The chalcone content, a vital substance that makes up the yellow color, also decreased significantly in petals. Whereas, the contents of some carotenes (lycopene, α-carotene, γ-carotene) were increased significantly in petals. Further, transcriptome analysis showed that the targeted mutation of BnaCRTISO resulted in the significant down-regulation of important genes BnaPSY and BnaC4H in the carotenoid and flavonoid synthesis pathways, respectively; however, the expression of other genes related to carotenes and xanthophylls synthesis, such as BnaPDS3, BnaZEP, BnaBCH1 and BCH2, was up-regulated. This indicates that the molecular mechanism regulating petal color variation in B. napus is more complicated than those reported in Arabidopsis and other Brassica species. These results provide insight into the molecular mechanisms underlying flower color variation in rapeseed and provides valuable resources for rapeseed breeding.

5.
ACS Omega ; 4(15): 16508-16516, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31616829

RESUMEN

The oily wastewater generated in the industrial field is adversely affecting the environment, while the current methods for oil-water separation are complex and costly. Therefore, it is significant to use low cost and environmentally friendly materials to prepare a smart responsive superhydrophobic coating for the effective separation of oil-water mixtures. In this paper, a fluorine-free copolymer with pH responsiveness was fabricated by a solution impregnation method, and it was compounded by silica nanoparticles/polydimethylsiloxane to prepare a superhydrophobic coating on the paper and cotton fabric. The prepared superhydrophobic coating remained in the superhydrophobic state after the alkali treatment, while it would be converted into the hydrophilic state after the acid treatment. Therefore, the pH-responsive superhydrophobic coating will be applied in controlled selective oil-water separation.

6.
Plant Biotechnol J ; 16(7): 1322-1335, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29250878

RESUMEN

Multilocular silique is a desirable agricultural trait with great potential for the development of high-yield varieties of Brassica. To date, no spontaneous or induced multilocular mutants have been reported in Brassica napus, which likely reflects its allotetraploid nature and the extremely low probability of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we present evidence for the efficient knockout of rapeseed homologues of CLAVATA3 (CLV3) for a secreted peptide and its related receptors CLV1 and CLV2 in the CLV signalling pathway using the CRISPR/Cas9 system and achieved stable transmission of the mutations across three generations. Each BnCLV gene has two copies located in two subgenomes. The multilocular phenotype can be recovered only in knockout mutations of both copies of each BnCLV gene, illustrating that the simultaneous alteration of multiple gene copies by CRISPR/Cas9 mutagenesis has great potential in generating agronomically important mutations in rapeseed. The mutagenesis efficiency varied widely from 0% to 48.65% in T0 with different single-guide RNAs (sgRNAs), indicating that the appropriate selection of the sgRNA is important for effectively generating indels in rapeseed. The double mutation of BnCLV3 produced more leaves and multilocular siliques with a significantly higher number of seeds per silique and a higher seed weight than the wild-type and single mutant plants, potentially contributing to increased seed production. We also assessed the efficiency of the horizontal transfer of Cas9/gRNA cassettes by pollination. Our findings reveal the potential for plant breeding strategies to improve yield traits in currently cultivated rapeseed varieties.


Asunto(s)
Brassica napus/genética , Técnicas de Inactivación de Genes , Genes de Plantas/genética , Semillas/genética , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Técnicas de Inactivación de Genes/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carácter Cuantitativo Heredable , Semillas/crecimiento & desarrollo
7.
Dis Aquat Organ ; 106(1): 85-91, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24062556

RESUMEN

The protozoan parasite Bonamia ostreae is a destructive pathogen of flat oysters and has been reported to be widespread in Europe and North America. The biological characteristics of this unicellular parasite are still not fully understood. In this study, 104 Ostrea edulis imported from the USA to the Guangdong province of China for consumption were examined for Bonamia infection. PCR assay, combined with restriction fragment length polymorphism, sequencing and BLAST analysis, showed that B. ostreae DNA could be detected in 1 of the 104 oyster samples. Light microscopy revealed Bonamia-like organisms in the oyster. PCR assay and fluorescent in situ hybridization showed that B. ostreae organisms were present and retained their integrity after 4 wk in culture. Acridine orange-ethidium bromide staining indicated that the B. ostreae were still alive. In conclusion, B. ostreae was present in oysters imported to China. More importantly, the parasite was able to survive for at least 4 wk of in vitro culture at 4°C, which further implied a long-term transmission risk of B. ostreae. Considering the wide culture beds of Crassostrea ariakensis and C. gigas in China, and that C. ariakensis and C. gigas are susceptible hosts or reservoirs of B. ostreae, our study highlights the potential risk of introducing B. ostreae by importing O. edulis from a Bonamia endemic area.


Asunto(s)
Haplosporidios/fisiología , Interacciones Huésped-Parásitos , Ostrea/parasitología , Animales , China , Comercio
8.
J Environ Sci (China) ; 25(10): 2102-11, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24494498

RESUMEN

Many studies have shown soil degradation after the conversion of native forests to exotic Eucalyptus plantations. However, few studies have investigated the long-term impacts of short-rotation forestry practices on soil microorganisms. The impacts of Eucalyptus successive rotations on soil microbial communities were evaluated by comparing phospholipid fatty acid (PLFA) abundances, compositions, and enzyme activities of native Pinus massoniana plantations and adjacent 1st, 2nd, 3rd, 4th generation Eucalyptus plantations. The conversion from P. massoniana to Eucalyptus plantations significantly decreased soil microbial community size and enzyme activities, and increased microbial physiological stress. However, the PLFA abundances formed "u" shaped quadratic functions with Eucalyptus plantation age. Alternatively, physiological stress biomarkers, the ratios of monounsaturated to saturated fatty acid and Gram+ to Gram- bacteria, formed "n"' shaped quadratic functions, and the ratio of cy17:0 to 16:1omega7c decreased with plantation age. The activities of phenol oxidase, peroxidase, and acid phosphatase increased with Eucalyptus plantation age, while the cellobiohydrolase activity formed "u" shaped quadratic functions. Soil N:P, alkaline hydrolytic nitrogen, soil organic carbon, and understory cover largely explained the variation in PLFA profiles while soil N:P, alkaline hydrolytic nitrogen, and understory cover explained most of the variability in enzyme activity. In conclusion, soil microbial structure and function under Eucalyptus plantations were strongly impacted by plantation age. Most of the changes could be explained by altered soil resource availability and understory cover associated with successive planting of Eucalyptus. Our results highlight the importance of plantation age for assessing the impacts of plantation conversion as well as the importance of reducing disturbance for plantation management.


Asunto(s)
Agricultura , Eucalyptus/fisiología , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...