Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999190

RESUMEN

This paper systematically investigates the structure, stability, and electronic properties of niobium carbide clusters, NbmCn (m = 5, 6; n = 1-7), using density functional theory. Nb5C2 and Nb5C6 possess higher dissociation energies and second-order difference energies, indicating that they have higher thermodynamic stability. Moreover, ab initio molecular dynamics (AIMD) simulations are used to demonstrate the thermal stability of these structures. The analysis of the density of states indicates that the molecular orbitals of NbmCn (m = 5, 6; n = 1-7) are primarily contributed by niobium atoms, with carbon atoms having a smaller contribution. The composition of the frontier molecular orbitals reveals that niobium atoms contribute approximately 73.1% to 99.8% to NbmCn clusters, while carbon atoms contribute about 0.2% to 26.9%.

3.
Environ Pollut ; 358: 124497, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964645

RESUMEN

Beryllium-containing sludge (BCS) is a byproduct of the physicochemical treatment of beryllium smelting wastewater. The pollutant element beryllium within BCS is highly unstable and extremely toxic, characterized by its small ionic radius and low charge density, resulting in a high risk of leaching and migration. This study is the first to investigate the leaching behavior, influencing mechanisms, and kinetic processes of beryllium in BCS under various environmental conditions. The results indicate that, under national standard conditions, beryllium exhibits a rapid leaching phase within the first 5 h, which then stabilizes after 10 h, with the total leached content significantly exceeding the leaching toxicity identification standards. Under mildly acidic (pH ≤ 5) or highly alkaline (pH = 14) conditions, beryllium demonstrates pronounced leaching and migration behaviors. Notably, in acidic conditions, the leaching rate exceeds 80% within 5 h. Combining the treatment process of beryllium-containing wastewater with analytical methods such as SEM, XPS, ToF-SIMS, and FTIR, it is revealed that due to the heterogeneous nature of BCS, the particle aggregates dissociate over time under acidic conditions. The particle surfaces become increasingly rough, leading to dissolution and the emergence of more reactive sites, resulting in a high proportion of beryllium leaching. Under these conditions, the gradual reaction of Be(OH)2 in BCS to form soluble Be2+ and its hydrolytic complexes is identified as the primary mechanism for extensive beryllium migration. The process encounters minimal diffusion resistance and is classified as reaction-controlled. In acidic conditions with pH = 4, the leaching rate of beryllium significantly increases with rising temperature. The leaching kinetics equation is [(1-x)-0.44]=e(18.26-53050RT)·t, with an apparent activation energy of 53.05 kJ mol-1.

4.
Transl Neurodegener ; 13(1): 34, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044270

RESUMEN

BACKGROUND: Depressive symptoms often occur in patients with Alzheimer's disease (AD) and exacerbate the pathogenesis of AD. However, the neural circuit mechanisms underlying the AD-associated depression remain unclear. The serotonergic system plays crucial roles in both AD and depression. METHODS: We used a combination of in vivo trans-synaptic circuit-dissecting anatomical approaches, chemogenetic manipulations, optogenetic manipulations, pharmacological methods, behavioral testing, and electrophysiological recording to investigate dorsal raphe nucleus serotonergic circuit in AD-associated depression in AD mouse model. RESULTS: We found that the activity of dorsal raphe nucleus serotonin neurons (DRN5-HT) and their projections to the dorsal hippocampal CA1 (dCA1) terminals (DRN5-HT-dCA1CaMKII) both decreased in brains of early 5×FAD mice. Chemogenetic or optogenetic activation of the DRN5-HT-dCA1CaMKII neural circuit attenuated the depressive symptoms and cognitive impairments in 5×FAD mice through serotonin receptor 1B (5-HT1BR) and 4 (5-HT4R). Pharmacological activation of 5-HT1BR or 5-HT4R attenuated the depressive symptoms and cognitive impairments in 5×FAD mice by regulating the DRN5-HT-dCA1CaMKII neural circuit to improve synaptic plasticity. CONCLUSIONS: These findings provide a new mechanistic connection between depression and AD and provide potential pharmaceutical prevention targets for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Depresión , Modelos Animales de Enfermedad , Núcleo Dorsal del Rafe , Ratones Transgénicos , Neuronas Serotoninérgicas , Animales , Núcleo Dorsal del Rafe/metabolismo , Masculino , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/psicología , Disfunción Cognitiva/fisiopatología , Ratones , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/fisiología , Depresión/metabolismo , Depresión/genética , Depresión/psicología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Hipocampo/metabolismo , Serotonina/metabolismo , Optogenética , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología
5.
Curr Microbiol ; 81(9): 285, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073500

RESUMEN

Vibrio phages have emerged as a potential alternative to antibiotic therapy for treating Vibrio infections. In this study, a lytic Vibrio phage, vB_ValA_R15Z against Vibrio alginolyticus ATCC 17749T, was isolated from an aquatic water sample collected in Xiamen, China. The phage had an icosahedral head (diameter 69 ± 2 nm) and a short, non-contractile tail measuring 16 ± 2 nm. The genome of vB_ValA_R15Z was found to be a double-stranded DNA consisting of 43, 552 bp, containing 54 coding sequences (CDSs) associated with phage packaging, structure, DNA metabolism, lysis and additional functions. The BLASTN results indicated that vB_ValA_R15Z shared less than 90.18% similarity with known phages recorded in the NCBI GenBank database, suggesting that vB_ValA_R15Z was a novel Vibrio phage. Furthermore, phylogenetic analysis revealed that vB_ValA_R15Z belongs to the genus Kaohsiungvirus. In addition, a typical lytic mechanism (holin-endolysim) was found in the genome of vB_ValA_R15Z, while no antibiotic resistance- or virulence factor-related gene was detected. Overall, the study provides valuable insights into the isolation and characterization of vB_ValA_R15Z, highlighting its potential as an effective phage therapy option for combating Vibrio alginolyticus infections.


Asunto(s)
Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/clasificación , China , ADN Viral/genética , Vibrio alginolyticus/virología , Vibrio alginolyticus/genética , Vibrio/virología , Vibrio/genética , Análisis de Secuencia de ADN
6.
Cancer Sci ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013843

RESUMEN

In our previous study, we found that small ubiquitin-related modifier (SUMO)-activating enzyme ubiquitin-associated-2 domain (UBA2) was upregulated in hepatocellular carcinoma (HCC) patients who were insensitive to chemoembolization. In this study, we aimed to investigate the role of UBA2 in HCC progression. Three cohorts were used to evaluate the efficacy of UBA2 as a prognostic factor for HCC. Our results indicated that UBA2 was associated with aggressive clinical behaviors and was a strong indicator of poor prognosis in HCC. In vitro experiments demonstrated that UBA2 accelerated cell growth, invasion, and migration. These results were further supported by in vivo experiments. RNA-sequencing analysis indicated NQO1 as a target of UBA2, with its levels altering following UBA2 manipulation. The results were verified by western blotting (WB) and quantitative PCR. The SUMOplot Analysis Program predicted lysine residue K240 as a modification target of UBA2, which was confirmed by immunoprecipitation (IP) assays. Subsequent mutation of NQO1 at K240 in HCC cell lines and functional assays revealed the significance of this modification. In addition, the oncogenic effect of UBA2 could be reversed by the SUMO inhibitor ML792 in vivo and in vitro. In conclusion, our study elucidated the regulatory mechanism of UBA2 in HCC and suggested that the SUMO inhibitor ML792 may be an effective combinatory treatment for patients with aberrant UBA2 expression.

7.
Nat Immunol ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025963

RESUMEN

Germinal centers (GCs) that form in mucosal sites are exposed to gut-derived factors that have the potential to influence homeostasis independent of antigen receptor-driven selective processes. The G-protein Gα13 confines B cells to the GC and limits the development of GC-derived lymphoma. We discovered that Gα13-deficiency fuels the GC reaction via increased mTORC1 signaling and Myc protein expression specifically in the mesenteric lymph node (mLN). The competitive advantage of Gα13-deficient GC B cells (GCBs) in mLN was not dependent on T cell help or gut microbiota. Instead, Gα13-deficient GCBs were selectively dependent on dietary nutrients likely due to greater access to gut lymphatics. Specifically, we found that diet-derived glutamine supported proliferation and Myc expression in Gα13-deficient GCBs in the mLN. Thus, GC confinement limits the effects of dietary glutamine on GC dynamics in mucosal tissues. Gα13 pathway mutations coopt these processes to promote the gut tropism of aggressive lymphoma.

8.
J Phys Chem A ; 128(28): 5459-5472, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38973649

RESUMEN

In this study, we employ density functional theory along with the artificial bee colony algorithm for cluster global optimization to explore the low-lying structures of TeBnq (n = 3-16, q = 0, -1). The primary focus is on reporting the structural properties of these clusters. The results reveal a consistent doping pattern of the tellurium atom onto the in-plane edges of planar or quasi-planar boron clusters in the most energetically stable isomers. Additionally, we simulate the photoelectron spectra of the cluster anions. Through relative stability analysis, we identify three clusters with magic numbers -TeB7-, TeB10, and TeB12. The aromaticity of these clusters is elucidated using adaptive natural density partitioning (AdNDP) and magnetic properties analysis. Notably, TeB7- exhibits a perfect σ-π doubly aromatic structure, while TeB12 demonstrates strong island aromaticity. These findings significantly contribute to our understanding of the structural and electronic properties of these clusters.

9.
Clin Med Insights Endocrinol Diabetes ; 17: 11795514241259741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859965

RESUMEN

Background: Diabetic kidney disease (DKD) is the main cause of end-stage renal disease and has a high mortality rate. Currently, no effective treatments are available to reduce the progression of kidney damage associated with diabetes. Objectives: To explore the influence and predictive value of the atherogenic index of plasma (AIP) on early chronic kidney disease and liver injury in patients with type 2 diabetes mellitus (T2DM). Methods: Medical records of 1057 hospitalized adult patients with T2DM between January 2021 and December 2022 were collected. The predictive value of AIP, renal function, and liver injury in patients with T2DM were analyzed using Pearson's correlation, multiple logistic regression, and receiver operating characteristic (ROC) curve analyses. Results: AIP was a sensitive indicator of early liver and kidney injury in patients with T2DM. Patients in the DKD group showed increased AIP that positively correlated with serum creatinine, uric acid, and ß2-microglobulin levels. Increased AIP negatively correlated with estimated glomerular filtration rate (eGFR). AIP significantly correlated with alanine aminotransferase and aspartate aminotransferase levels and glutamyl transpeptidase-to-platelet ratio (GPR). An eGFR of 60-100 mL/min/1.73 m2 significantly increased the risk of DKD as the AIP increased. At lower GPR levels, the risk of DKD significantly increased with increasing AIP. However, no significant difference was found between the 2 groups when the GPR was >0.1407. The ROC curve analysis showed that AIP could predict early liver injury. Conclusions: AIP is directly involved in early liver and kidney injury in T2DM and may be a sensitive indicator for early detection.


Diabetes and its complications are a global public health concern. Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and metabolism-related disease factors are found throughout the progression of DKD. This study identified common sensitive indicators of early metabolism-related damage to liver and kidney function in patients with T2DM.

10.
Sci Adv ; 10(26): eado1855, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941459

RESUMEN

Bile acids (BAs) metabolism has a significant impact on the pathogenesis of Alzheimer's disease (AD). We found that deoxycholic acid (DCA) increased in brains of AD mice at an early stage. The enhanced production of DCA induces the up-regulation of the bile acid receptor Takeda G protein-coupled receptor (TGR5), which is also specifically increased in neurons of AD mouse brains at an early stage. The accumulation of exogenous DCA impairs cognitive function in wild-type mice, but not in TGR5 knockout mice. This suggests that TGR5 is the primary receptor mediating these effects of DCA. Furthermore, excitatory neuron-specific knockout of TGR5 ameliorates Aß pathology and cognition impairments in AD mice. The underlying mechanism linking TGR5 and AD pathology relies on the downstream effectors of TGR5 and the APP production, which is succinctly concluded as a "p-STAT3-APH1-γ-secretase" signaling pathway. Our studies identified the critical role of TGR5 in the pathological development of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Neuronas , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Encéfalo/metabolismo , Encéfalo/patología , Ácido Desoxicólico/farmacología , Modelos Animales de Enfermedad , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
11.
Poult Sci ; 103(8): 103879, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833748

RESUMEN

Feed efficiency (FE) is a crucial economic indicator of meat duck production. The objective of this study was to assess the impact of residual feed intake (RFI), defined as the difference between the actual and expected feed intake based on animal's production and maintenance requirements, on the growth performance (GP), slaughter and internal organ characteristics of fast-growing meat ducks. In total, 1,300 healthy 14-day-old male fast-growing meat ducks were housed in individual cages until slaughter at the age of 35 d. The characteristics of the carcass and internal organs of 30 ducks with the highest RFI (HRFI) and the lowest RFI (LRFI) were respectively determined. RFI, the feed conversion ratio (FCR), and average day feed intake (ADFI) were significantly lower in the LRFI group than the HRFI group (P < 0.001), while there were no significant differences in marketing BW or BW gain (BWG) (P > 0.05). The thigh muscle and lean meat yields were higher, and the abdominal fat content was lower (P < 0.001) in the LRFI group, while there were no significant differences in other carcass traits between the groups (P > 0.05). The liver and gizzard yields were significantly higher (P < 0.001) in the LRFI group, while there were no significant differences (P > 0.05) in intestinal length between the groups. RFI was highly positively correlate with FCR and ADFI (P < 0.01), but negatively correlated the yields of thigh muscle, lean meat, liver, and gizzard, and positively correlated with abdominal fat content. These results indicate that selection for low RFI could improve the FE of fast-growing meat ducks without affecting the marketing BW and BWG, while increasing yields of thigh muscle and lean meat and reducing abdominal fat content. These findings offer useful insights into the biological processes that influence FE of fast-growing meat ducks.


Asunto(s)
Alimentación Animal , Patos , Animales , Patos/crecimiento & desarrollo , Patos/fisiología , Masculino , Alimentación Animal/análisis , Carne/análisis , Ingestión de Alimentos , Crianza de Animales Domésticos/métodos , Crianza de Animales Domésticos/economía , Composición Corporal
12.
Fitoterapia ; 176: 106010, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740341

RESUMEN

Flowers of Hosta plantaginea (H. plantaginea), a widely utilized medicinal herb in Mongolian medicine, holds a significant historical background in terms of its medicinal applications. This herb is renowned for its ability to clear heat and detoxify the body, alleviate cough, and provide relief to the throat. However, the active ingredients and the potential mechanism of action remain ambiguity. The objective of this study was to conduct a comprehensive analysis of the efficacy of H. plantaginea in treating pneumonia, identify its active ingredients and unveil the pharmacological mechanism in the treatment of pneumonia. In vivo experiments demonstrate the plant's anti-pneumonia properties, while mass spectrometry analysis identifies 62 chemicals, with 14 absorbed into the bloodstream. Network pharmacology and Venn analysis reveal 195 targets of 52 active ingredients, with 49 gene targets common to H. plantaginea and pneumonia. Protein-protein interaction (PPI) network construction and enrichment analysis highlight the key targets and pathways such as AKT, EGFR, IL-17. Western blotting confirms downregulation of these pathways, indicating the anti-inflammatory effects of H. plantaginea in treating acute lung injury. Our findings showed that the treatment of ALI with the H. plantaginea exerts its anti-inflammatory effects through multiple components, targets, and pathways. This study established a solid experimental foundation for investigating the various components, targets, and pathways involved in the treatment of pneumonia using H. plantaginea. It offers valuable insights from multiple perspectives and can serve as a reference for the clinical application of this plant in pneumonia treatment.


Asunto(s)
Flores , Farmacología en Red , Fitoquímicos , Neumonía , Animales , Flores/química , Neumonía/tratamiento farmacológico , Ratones , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Hosta , Antiinflamatorios/farmacología , Mapas de Interacción de Proteínas , Masculino , Plantas Medicinales/química , Medicina Tradicional Mongoliana , Lesión Pulmonar Aguda/tratamiento farmacológico
13.
Int J Biol Macromol ; 271(Pt 1): 132452, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777007

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Little is known about how gene expression and chromatin structure are regulated in NAFLD due to lack of suitable model. Ducks naturally develop fatty liver similar to serious human non-alcoholic fatty liver (NAFL) without adipose inflammation and liver fibrosis, thus serves as a good model for investigating molecular mechanisms of adipose metabolism and anti-inflammation. Here, we constructed a NAFLD model without adipose inflammation and liver fibrosis in ducks. By performing dynamic pathological and transcriptomic analyses, we identified critical genes involving in regulation of the NF-κB and MHCII signaling, which usually lead to adipose inflammation and liver fibrosis. We further generated dynamic three-dimensional chromatin maps during liver fatty formation and recovery. This showed that ducks enlarged hepatocyte cell nuclei to reduce inter-chromosomal interaction, decompress chromatin structure, and alter strength of intra-TAD and loop interactions during fatty liver formation. These changes partially contributed to the tight control the NF-κB and the MHCII signaling. Our analysis uncovers duck chromatin reorganization might be advantageous to maintain liver regenerative capacity and reduce adipose inflammation. These findings shed light on new strategies for NAFLD control.


Asunto(s)
Cromatina , Patos , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Cromatina/metabolismo , Cromatina/genética , FN-kappa B/metabolismo , Inflamación/genética , Inflamación/patología , Inflamación/metabolismo , Tejido Adiposo/metabolismo , Genoma , Hígado/metabolismo , Hígado/patología , Modelos Animales de Enfermedad , Transducción de Señal , Hepatocitos/metabolismo , Hepatocitos/patología , Regulación de la Expresión Génica
14.
Heliyon ; 10(9): e30488, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737264

RESUMEN

Salvia miltiorrhiza Bunge (SM) is a widespread herbal therapy for myocardial ischemia (MI). Nevertheless, the therapeutic signaling networks of SM extract on MI is yet unknown. Emerging evidences suggested that alterations in cardiac metabolite influences host metabolism and accelerates MI progression. Herein, we employed an isoproterenol (ISO)-induced acute myocardial ischemia (AMI) rat model to confirm the pharmacological effects of SM extract (0.8, 0.9, 1.8 g/kg/day) via assessment of the histopathological alterations that occur within the heart tissue and associated cytokines; we also examined the underlying SM extract-mediated signaling networks using untargeted metabolomics. The results indicated that 25 compounds with a relative content higher than 1 % in SM aqueous extract were identified using LC-MS/MS analysis, which included salvianolic acid B, lithospermic acid, salvianolic acid A, and caffeic acid as main components. An in vivo experiment showed that pretreatment with SM extract attenuated ISO-induced myocardial injury, shown as decreased myocardial ischemic size, transformed electrocardiographic, histopathological, and serum biochemical aberrations, reduced levels of proinflammatory cytokines, inhibited oxidative stress (OS), and reversed the trepidations of the cardiac tissue metabolic profiles. Metabolomics analysis shows that the levels of 24 differential metabolites (DMs) approached the same value as controls after SM extract therapy, which were primarily involved in histidine; alanine, aspartate, and glutamate; glycerophospholipid; and glycine, serine, and threonine metabolisms through metabolic pathway analysis. Correlation analysis demonstrated that the levels of modulatory effects of SM extract on the inflammation and OS were related to alterations in endogenous metabolites. Overall, SM extract demonstrated significant cardioprotective effects in an ISO-induced AMI rat model, alleviating myocardial injury, inflammation and oxidative stress, with metabolomics analysis indicating potential therapeutic pathways for myocardial ischemia.

15.
iScience ; 27(5): 109778, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38746665

RESUMEN

Depressive symptoms usually precede the cognitive decline in Alzheimer disease (AD) and worsen the clinical outcome. However, the neural circuitry mediating early emotional dysfunction, especially depressive symptoms in AD, remains elusive. Anterior cingulate cortex (ACC) is closely related to depression and vulnerable in AD. By quantitative whole-brain mapping and electrophysiological recording, we found that the decreased axonal calcium activity in neurons of ACC and the glutamatergic projection from ACC to the ventral hippocampal CA1 (vCA1) is significantly impaired in 3-month-old 5×FAD mice, which exhibit depressive-like phenotype before cognition defects in early stage. The activation of ACC-vCA1 circuit by chemogenetic manipulation efficiently ameliorated the early depressive-like behaviors in 5×FAD mice. We further identified the upregulated neuregulin-1 (Nrg1) in ACC impaired the excitatory synaptic transmission from the ACC to vCA1 in AD. Our work reveals the role of ACC-vCA1 circuit in regulating AD associated depression symptom in a mouse model of AD.

16.
J Med Chem ; 67(10): 8020-8042, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727048

RESUMEN

Promising targeted therapy options to overcome drug resistance and side effects caused by platinum(II) drugs for treatment in hepatocellular carcinoma are urgently needed. Herein, six novel multifunctional platinum(IV) complexes through linking platinum(II) agents and glycyrrhetinic acid (GA) were designed and synthesized. Among them, complex 20 showed superior antitumor activity against tested cancer cells including cisplatin resistance cells than cisplatin and simultaneously displayed good liver-targeting ability. Moreover, complex 20 can significantly cause DNA damage and mitochondrial dysfunction, promote reactive oxygen species generation, activate endoplasmic reticulum stress, and eventually induce apoptosis. Additionally, complex 20 can effectively inhibit cell migration and invasion and trigger autophagy and ferroptosis in HepG-2 cells. More importantly, complex 20 demonstrated stronger tumor inhibition ability than cisplatin or the combo of cisplatin/GA with almost no systemic toxicity in HepG-2 or A549 xenograft models. Collectively, complex 20 could be developed as a potential anti-HCC agent for cancer treatment.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Ácido Glicirretínico , Neoplasias Hepáticas , Humanos , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/química , Ácido Glicirretínico/síntesis química , Ácido Glicirretínico/análogos & derivados , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Animales , Ratones , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Ligandos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ratones Desnudos , Apoptosis/efectos de los fármacos , Células Hep G2 , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Cisplatino/farmacología , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/uso terapéutico , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Ethn Health ; 29(4-5): 435-446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38682471

RESUMEN

OBJECTIVES: This study aimed to examine ethnic disparities in the prevalence of diabetes and its association with sleep disorders among the older adults Han and ethnic minority (Bai, Ha Ni, and Dai) population in rural southwest China. METHODS: A cross-sectional survey of 5,642 was conducted among the rural southwest population aged ≥60 years, consisting of a structured interview and measurement of fasting blood glucose, height, weight, and waist circumference. The Pittsburgh Sleep Quality Index (PSQI) was used to assess sleep quality. RESULTS: The overall prevalence of diabetes and sleep disorder was 10.2% and 40.1%, respectively. Bai participants had the highest prevalence of diabetes (15.9%) and obesity (9.9%)(P < 0.01), while Ha Ni participants had the lowest prevalence of diabetes (5.1%) and obesity (3.4%)(P < 0.01). The highest prevalence of sleep disorder (48.4%) was recorded in Bai participants, while Dai participants had the lowest prevalence of sleep disorder (25.6%)(P < 0.01). In all four studied ethnicities, females had a higher prevalence of sleep disorder than males (P < 0.01), and the prevalence of sleep disorder increased with age (P < 0.01). The results of multivariate logistic regression analysis indicated older adults with sleep disorder had a risk of developing diabetes (P < 0.05). Moreover, the higher educational level, family history of diabetes, and obesity were the main risk factors for diabetes in participants (P < 0.01). CONCLUSION: There are stark ethnic disparities in the prevalence of diabetes and sleep disorders in southwest China. Future diabetes prevention and control strategies should be tailored to address ethnicity, and improving sleep quality may reduce the prevalence of diabetes.


Asunto(s)
Diabetes Mellitus , Población Rural , Trastornos del Sueño-Vigilia , Humanos , China/epidemiología , China/etnología , Femenino , Masculino , Anciano , Estudios Transversales , Trastornos del Sueño-Vigilia/etnología , Trastornos del Sueño-Vigilia/epidemiología , Prevalencia , Persona de Mediana Edad , Población Rural/estadística & datos numéricos , Diabetes Mellitus/etnología , Diabetes Mellitus/epidemiología , Etnicidad/estadística & datos numéricos , Disparidades en el Estado de Salud , Obesidad/etnología , Obesidad/epidemiología , Anciano de 80 o más Años
18.
Adv Sci (Weinh) ; 11(24): e2307953, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582517

RESUMEN

FOXG1 syndrome is a developmental encephalopathy caused by FOXG1 (Forkhead box G1) mutations, resulting in high phenotypic variability. However, the upstream transcriptional regulation of Foxg1 expression remains unclear. This report demonstrates that both deficiency and overexpression of Men1 (protein: menin, a pathogenic gene of MEN1 syndrome known as multiple endocrine neoplasia type 1) lead to autism-like behaviors, such as social defects, increased repetitive behaviors, and cognitive impairments. Multifaceted transcriptome analyses revealed that Foxg1 signaling is predominantly altered in Men1 deficiency mice, through its regulation of the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (Atrx) factor. Atrx recruits menin to bind to the transcriptional start region of Foxg1 and mediates the regulation of Foxg1 expression by H3K4me3 (Trimethylation of histone H3 lysine 4) modification. The deficits observed in menin deficient mice are rescued by the over-expression of Foxg1, leading to normalized spine growth and restoration of hippocampal synaptic plasticity. These findings suggest that menin may have a putative role in the maintenance of Foxg1 expression, highlighting menin signaling as a potential therapeutic target for Foxg1-related encephalopathy.


Asunto(s)
Modelos Animales de Enfermedad , Factores de Transcripción Forkhead , Proteínas del Tejido Nervioso , Proteínas Proto-Oncogénicas , Animales , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Encefalopatías/genética , Encefalopatías/metabolismo , Conducta Animal , Masculino
19.
Antioxidants (Basel) ; 13(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38671925

RESUMEN

Cannabis and its major cannabinoid cannabidiol (CBD) are reported to exhibit anticancer activity against skin tumors. However, the cytotoxic effects of other minor cannabinoids and synthetic CBD derivatives in melanoma are not fully elucidated. Herein, the antiproliferative activity of a panel of phytocannabinoids was screened against murine (B16F10) and human (A375) melanoma cells. CBD was the most cytotoxic natural cannabinoid with respective IC50 of 28.6 and 51.6 µM. Further assessment of the cytotoxicity of synthetic CBD derivatives in B16F10 cells identified two bipiperidinyl group-bearing derivatives (22 and 34) with enhanced cytotoxicity (IC50 = 3.1 and 8.5 µM, respectively). Furthermore, several cell death assays including flow cytometric (for apoptosis and ferroptosis) and lactate dehydrogenase (for pyroptosis) assays were used to characterize the antiproliferative activity of CBD and its bipiperidinyl derivatives. The augmented cytotoxicity of 22 and 34 in B16F10 cells was attributed to their capacity to promote apoptosis (as evidenced by increased apoptotic population). Taken together, this study supports the notion that CBD and its derivatives are promising lead compounds for cannabinoid-based interventions for melanoma management.

20.
Molecules ; 29(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675512

RESUMEN

The geometrical structures, relative stabilities, and electronic and magnetic properties of niobium carbon clusters, Nb7Cn (n = 1-7), are investigated in this study. Density functional theory (DFT) calculations, coupled with the Saunders Kick global search, are conducted to explore the structural properties of Nb7Cn (n = 1-7). The results regarding the average binding energy, second-order difference energy, dissociation energy, HOMO-LUMO gap, and chemical hardness highlight the robust stability of Nb7C3. Analysis of the density of states suggests that the molecular orbitals of Nb7Cn primarily consist of orbitals from the transition metal Nb, with minimal involvement of C atoms. Spin density and natural population analysis reveal that the total magnetic moment of Nb7Cn predominantly resides on the Nb atoms. The contribution of Nb atoms to the total magnetic moment stems mainly from the 4d orbital, followed by the 5p, 5s, and 6s orbitals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...