Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Tipo de estudio
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0012224, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150249

RESUMEN

Background emergence of multidrug-resistant (MDR) bacterial strains is a public health concern that threatens global and regional security. Efflux pump-overexpressing MDR strains from clinical isolates are the best subjects for studying the mechanisms of MDR caused by bacterial efflux pumps. A Klebsiella pneumoniae strain overexpressing the OqxB-only efflux pump was screened from a clinical strain library to explore reverse OqxB-mediated bacterial resistance strategies. We identified non-repetitive clinical isolated K. pneumoniae strains using a matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrometry clinical TOF-II (Clin-TOF-II) and susceptibility test screening against levofloxacin and ciprofloxacin. And the polymorphism analysis was conducted using pulsed-field gel electrophoresis. Efflux pump function of resistant strains is obtained by combined drug sensitivity test of phenylalanine-arginine beta-naphthylamide (PaßN, an efflux pump inhibitor) and detection with ethidium bromide as an indicator. The quantitative reverse transcription PCR was performed to assess whether the oqxB gene was overexpressed in K. pneumoniae isolates. Additional analyses assessed whether the oqxB gene was overexpressed in K. pneumoniae isolates and gene knockout and complementation strains were constructed. The binding mode of PaßN with OqxB was determined using molecular docking modeling. Among the clinical quinolone-resistant K. pneumoniae strains, one mediates resistance almost exclusively through the overexpression of the resistance-nodulation-division efflux pump, OqxB. Crystal structure of OqxB has been reported recently by N. Bharatham, P. Bhowmik, M. Aoki, U. Okada et al. (Nat Commun 12:5400, 2021, https://doi.org/10.1038/s41467-021-25679-0). The discovery of this strain will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and builds on the foundation for addressing the threat posed by quinolone resistance.IMPORTANCEThe emergence of antimicrobial resistance is a growing and significant health concern, particularly in the context of K. pneumoniae infections. The upregulation of efflux pump systems is a key factor that contributes to this resistance. Our results indicated that the K. pneumoniae strain GN 172867 exhibited a higher oqxB gene expression compared to the reference strain ATCC 43816. Deletion of oqxB led a decrease in the minimum inhibitory concentration of levofloxacin. Complementation with oqxB rescued antibiotic resistance in the oqxB mutant strain. We demonstrated that the overexpression of the OqxB efflux pump plays an important role in quinolone resistance. The discovery of strain GN 172867 will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and promotes further study of antimicrobial resistance.

2.
Heliyon ; 10(13): e33611, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027598

RESUMEN

Background: Severe fever with thrombocytopenia syndrome (SFTS) is spreading rapidly in Asia. The pathway of SFTS virus shedding from patient and specific use of personal protective equipments (PPEs) against viral transmission have rarely been reported. The study was to determine SFTS virus (SFTSV) shedding pattern from the respiratory, digestive and urinary tract to outside in patients. Methods: Patients were divided into mild and severe groups in three sentinel hospitals for SFTS in Anhui province from April 2020 to October 2022. SFTSV level from blood, throat swabs, fecal/anal swabs, urine and bedside environment swabs of SFTS patients were detected by qRT-PCR. Specific PPEs were applied in healthcare workers contacting with the patients who had oropharyngeal virus shedding and hemorrhagic signs. Results: A total of 189 SFTSV-confirmed patients were included in the study, 54 patients died (case fatality rate, 28.57 %). Positive SFTSV in throat swabs (T-SFTSV), fecal/anal swabs (F-SFTSV) and urine (U-SFTSV) were detected in 121 (64.02 %), 91 (48.15 %) and 65 (34.4 %) severely ill patients, respectively. The levels of T-SFTSV, F-SFTSV and U-SFTSV were positively correlated with the load of SFTSV in blood. We firstly revealed that SFTSV positive rate of throat swabs were correlated with occurrence of pneumonia and case fatality rate of patients (P < 0.0001). Specific precaution measures were applied by healthcare workers in participating cardiopulmonary resuscitation and orotracheal intubation for severely ill patients with positive T-SFTSV, no event of SFTSV human-to-human transmission occurred after application of effective PPEs. Conclusions: Our research demonstrated SFTSV could shed out from blood, oropharynx, feces and urine in severely ill patients. The excretion of SFTSV from these parts was positively correlated with viral load in the blood. Effective prevention measures against SFTSV human-to-human transmission are needed.

3.
Bioconjug Chem ; 35(7): 944-953, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38954775

RESUMEN

The chemical synthesis of homogeneously ubiquitylated histones is a powerful approach to decipher histone ubiquitylation-dependent epigenetic regulation. Among the various methods, α-halogen ketone-mediated conjugation chemistry has recently been an attractive strategy to generate single-monoubiquitylated histones for biochemical and structural studies. Herein, we report the use of this strategy to prepare not only dual- and even triple-monoubiquitylated histones but also diubiquitin-modified histones. We were surprised to find that the synthetic efficiencies of multi-monoubiquitylated histones were comparable to those of single-monoubiquitylated ones, suggesting that this strategy is highly tolerant to the number of ubiquitin monomers installed onto histones. The facile generation of a series of single-, dual-, and triple-monoubiquitylated H3 proteins enabled us to evaluate the influence of ubiquitylation patterns on the binding of DNA methyltransferase 1 (DNMT1) to nucleosomes. Our study highlights the potential of site-specific conjugation chemistry to generate chemically defined histones for epigenetic studies.


Asunto(s)
Histonas , Cetonas , Ubiquitinación , Histonas/química , Histonas/metabolismo , Histonas/síntesis química , Cetonas/química , Ubiquitina/química , Humanos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/química , Nucleosomas/química , Nucleosomas/metabolismo
4.
Nat Struct Mol Biol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918638

RESUMEN

Epigenetic regulators have a crucial effect on gene expression based on their manipulation of histone modifications. Histone H2AK119 monoubiquitination (H2AK119Ub), a well-established hallmark in transcription repression, is dynamically regulated by the opposing activities of Polycomb repressive complex 1 (PRC1) and nucleosome deubiquitinases including the primary human USP16 and Polycomb repressive deubiquitinase (PR-DUB) complex. Recently, the catalytic mechanism for the multi-subunit PR-DUB complex has been described, but how the single-subunit USP16 recognizes the H2AK119Ub nucleosome and cleaves the ubiquitin (Ub) remains unknown. Here we report the cryo-EM structure of USP16-H2AK119Ub nucleosome complex, which unveils a fundamentally distinct mode of H2AK119Ub deubiquitination compared to PR-DUB, encompassing the nucleosome recognition pattern independent of the H2A-H2B acidic patch and the conformational heterogeneity in the Ub motif and the histone H2A C-terminal tail. Our work highlights the mechanism diversity of H2AK119Ub deubiquitination and provides a structural framework for understanding the disease-causing mutations of USP16.

5.
J Nanobiotechnology ; 22(1): 52, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321555

RESUMEN

Bacterial cystitis, a commonly occurring urinary tract infection (UTI), is renowned for its extensive prevalence and tendency to recur. Despite the extensive utilization of levofloxacin as a conventional therapeutic approach for bacterial cystitis, its effectiveness is impeded by adverse toxic effects, drug resistance concerns, and its influence on the gut microbiota. This study introduces Lev@PADM, a hydrogel with antibacterial properties that demonstrates efficacy in the treatment of bacterial cystitis. Lev@PADM is produced by combining levofloxacin with decellularized porcine acellular dermal matrix hydrogel and exhibits remarkable biocompatibility. Lev@PADM demonstrates excellent stability as a hydrogel at body temperature, enabling direct administration to the site of infection through intravesical injection. This localized delivery route circumvents the systemic circulation of levofloxacin, resulting in a swift and substantial elevation of the antimicrobial agent's concentration specifically at the site of infection. The in vivo experimental findings provide evidence that Lev@PADM effectively prolongs the duration of levofloxacin's action, impedes the retention and invasion of E.coli in the urinary tract, diminishes the infiltration of innate immune cells into infected tissues, and simultaneously preserves the composition of the intestinal microbiota. These results indicate that, in comparison to the exclusive administration of levofloxacin, Lev@PADM offers notable benefits in terms of preserving the integrity of the bladder epithelial barrier and suppressing the recurrence of urinary tract infections.


Asunto(s)
Dermis Acelular , Cistitis , Infecciones Urinarias , Porcinos , Animales , Levofloxacino , Hidrogeles
6.
Nat Struct Mol Biol ; 31(2): 300-310, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177667

RESUMEN

The cancer-specific fusion oncoprotein SS18-SSX1 disturbs chromatin accessibility by hijacking the BAF complex from the promoters and enhancers to the Polycomb-repressed chromatin regions. This process relies on the selective recognition of H2AK119Ub nucleosomes by synovial sarcoma X breakpoint 1 (SSX1). However, the mechanism underlying the selective recognition of H2AK119Ub nucleosomes by SSX1 in the absence of ubiquitin (Ub)-binding capacity remains unknown. Here we report the cryo-EM structure of SSX1 bound to H2AK119Ub nucleosomes at 3.1-Å resolution. Combined in vitro biochemical and cellular assays revealed that the Ub recognition by SSX1 is unique and depends on a cryptic basic groove formed by H3 and the Ub motif on the H2AK119 site. Moreover, this unorthodox binding mode of SSX1 induces DNA unwrapping at the entry/exit sites. Together, our results describe a unique mode of site-specific ubiquitinated nucleosome recognition that underlies the specific hijacking of the BAF complex to Polycomb regions by SS18-SSX1 in synovial sarcoma.


Asunto(s)
Nucleosomas , Sarcoma Sinovial , Humanos , Sarcoma Sinovial/metabolismo , Cromatina , Membrana Celular/metabolismo , Proteínas de Fusión Oncogénica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...