Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39090454

RESUMEN

Given China's prohibition on the utilization of antibiotics as feed additives in 2020, we aim to investigate nutrition additives that are both efficient and safe. Lactobacillus, a well-recognized beneficial probiotic, has explicitly been investigated for its effects on health status of the host and overall impact on food industry. To evaluate effects of Lactobacillus plantarum (LW) supplementation on broiler chicken, we conducted comprehensive multi-omics analysis, growth performance evaluation, RT-qPCR analysis, and immunofluorescence. The findings revealed that LW supplementation resulted in a substantial progress in growth performance (approximately 205 g increase in final body weight in comparison to the control group (p < 0.01)). Additionally, LW exhibited promising potential for enhancing antioxidant properties of serum and promoting gut integrity and growth as evidenced by improved antioxidant indices (p < 0.01), intestinal villus morphology (p < 0.01), and enhanced gut barrier function (p < 0.01). Meanwhile, the multi-omics analysis, including 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry, revealed an enrichment of beneficial microbes in the gut of broilers that were supplemented with LW, while simultaneously depleting harmful microorganisms. Moreover, a noteworthy modification was observed in gut metabolic profiling subsequent to the execution of the probiotic strategy. Specifically, variations were noticed in the levels of metabolites and metabolic pathways such as parathyroid hormone synthesis, inflammatory mediator regulation of TRP channels, oxidative phosphorylation, and mineral absorption. Taken together, our findings validate that LW administration produces valuable effects on the health and growth performance of broilers owing to its capability to boost the gut microbiota homeostasis and intestinal metabolism. Present findings signify the potential of LW as a dietary additive to promote growth and development in broiler chickens.

2.
Curr Issues Mol Biol ; 46(7): 7169-7186, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39057068

RESUMEN

Clostridium perfringens (C. perfringens) is an important veterinary pathogen and a noteworthy threat to human and animal health. Recently, there has been a significant rise in the number of moose fatalities caused by this rare, endemic species in China. Currently, there is an increasing trend in conducting whole-genome analysis of C. perfringens strains originating from pigs and chickens, whereas fewer studies have been undertaken on Elaphurus davidianus-originating strains at the whole-genome level. Our laboratory has identified and isolated five C. perfringens type A from affected Elaphurus davidianus. The current study identified the most potent strain of C. perfringens, which originated from Elaphurus davidianus, and sequenced its genome to reveal virulence genes and pathogenicity. Our findings show that strain CX1-4 exhibits the highest levels of phospholipase activity, hemolytic activity, and mouse toxicity compared to the other four isolated C. perfringens type A strains. The chromosome sequence length of the CX1-4 strain was found to be 3,355,389 bp by complete genome sequencing. The current study unveils the genomic characteristics of C. perfringens type A originating from Elaphurus davidianus. It provides a core foundation for further investigation regarding the prevention and treatment of such infectious diseases in Elaphurus davidianus.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39046671

RESUMEN

Chemotherapy-induced intestinal mucositis based on 5-fluorouracil (5-FU) slows down the progress of cancer treatment and causes significant suffering to patients. Pediococcus pentosaceus (P. pentosaceus), as a type of LAB, has a range of probiotic properties, including antioxidant, immune benefits, and cholesterol-lowering effects, which are attracting increasing attention. However, studies on the protective effect of P. pentosaceus against chemotherapeutic-induced intestinal mucositis caused by 5-FU remain unclear. Therefore, this study aimed to investigate the potential relieving effects of P. pentosaceus PP34 on 5-FU-induced intestinal mucositis and its mechanism. In the present study, a P. pentosaceus PP34 solution (2 × 109 CFU/mL) was administered daily by gavage followed by intraperitoneal injection of 5-FU to model intestinal mucositis. The body weight, serum biochemical indices, jejunal pathological organization, and expression levels of inflammatory cytokines in the jejunum were examined. The results indicated that the mice induced with 5-FU developed typical intestinal mucositis symptoms and histopathological changes with intense inflammatory and oxidative responses. Moreover, the gut microbiota was disturbed, while PP34 effectively decreased the oxidative reactions and the expression levels of inflammatory mediators and regulated the gut microbiota in 5-FU-exposed mice. Taken together, the study indicated that P. pentosaceus PP34 ameliorates 5-Fluorouracil-induced intestinal mucositis via inhibiting oxidative stress and restoring the gut microbiota.

4.
Microb Pathog ; 194: 106799, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025382

RESUMEN

Pasturella multocida (P. multocida), a gram-negative bacterium, has long been a focus of interest in animal health because of its capacity to cause different infections, including hemorrhagic septicemia. Yaks, primarily found in high-altitude environments, are among the several livestock animals affected by these bacteria. Yaks are essential to the socioeconomic life of the people who depend on them since they are adapted to the cold and hypoxic conditions of highland environments. Nevertheless, these terrains exhibit a greater incidence of P. multocida despite the severe environmental complications. This predominance has been linked to the possible attenuation of the yak's immunological responses in such circumstances and the evolution of some bacterial strains to favor survival in the respiratory passages of the animals. Moreover, these particular strains threaten other cattle populations that interact with yaks, which might result in unanticipated outbreaks in areas previously thought to be low risk. Considering these findings, designing and executing preventative and control strategies suited explicitly for these distinct biological environments is imperative. Through such strategies, yaks' health will be guaranteed, and a larger bovine population will be safeguarded against unanticipated epidemics. The current review provides thorough insights that were previously dispersed among several investigations. Its distinct method of connecting the ecology of yaks with the dynamics of infection offers substantial background information for further studies and livestock management plans.


Asunto(s)
Altitud , Enfermedades de los Bovinos , Ganado , Infecciones por Pasteurella , Pasteurella multocida , Animales , Pasteurella multocida/inmunología , Pasteurella multocida/patogenicidad , Bovinos , Enfermedades de los Bovinos/microbiología , Infecciones por Pasteurella/veterinaria , Infecciones por Pasteurella/microbiología , Ganado/microbiología , Brotes de Enfermedades , Septicemia Hemorrágica/microbiología , Septicemia Hemorrágica/inmunología
5.
Nutrients ; 16(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38931255

RESUMEN

Gut microbiota are the microbial organisms that play a pivotal role in intestinal health and during disease conditions. Keeping in view the characteristic functions of gut microbiota, in this study, Lactobacillus reuteri TPC32 (L. reuteri TPC32) was isolated and identified, and its whole genome was analyzed by the Illumina MiSeq sequencing platform. The results revealed that L. reuteri TPC32 had high resistance against acid and bile salts with fine in vitro antibacterial ability. Accordingly, a genome sequence of L. reuteri TPC32 has a total length of 2,214,495 base pairs with a guanine-cytosine content of 38.81%. Based on metabolic annotation, out of 2,212 protein-encoding genes, 118 and 101 were annotated to carbohydrate metabolism and metabolism of cofactors and vitamins, respectively. Similarly, drug-resistance and virulence genes were annotated using the comprehensive antibiotic research database (CARD) and the virulence factor database (VFDB), in which vatE and tetW drug-resistance genes were annotated in L. reuteri TPC32, while virulence genes are not annotated. The early prevention of L. reuteri TPC32 reduced the Salmonella typhimurium (S. Typhimurium) infection in mice. The results show that L. reuteri TPC32 could improve the serum IgM, decrease the intestinal cytokine secretion to relieve intestinal cytokine storm, reinforce the intestinal biochemical barrier function by elevating the sIgA expression, and strengthen the intestinal physical barrier function. Simultaneously, based on the 16S rRNA analysis, the L. reuteri TPC32 results affect the recovery of intestinal microbiota from disease conditions and promote the multiplication of beneficial bacteria. These results provide new insights into the biological functions and therapeutic potential of L. reuteri TPC32 for treating intestinal inflammation.


Asunto(s)
Microbioma Gastrointestinal , Genoma Bacteriano , Limosilactobacillus reuteri , Probióticos , Secuenciación Completa del Genoma , Animales , Ratones , Porcinos , Salmonella typhimurium/genética , Salmonella typhimurium/efectos de los fármacos , Antibacterianos/farmacología , Factores de Virulencia/genética
6.
Ecotoxicol Environ Saf ; 275: 116260, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564867

RESUMEN

Thiram, a commonly used agricultural insecticide and fungicide, has been found to cause tibial dyschondroplasia (TD) in broilers, leading to substantial economic losses in the poultry industry. In this study, we aimed to investigate the mechanism of action of leucine in mitigating thiram-induced TD and leucine effects on gut microbial diversity. Broiler chickens were randomly divided into five equal groups: control group (standard diet), thiram-induced group (thiram 80 mg/kg from day 3 to day 7), and different concentrations of leucine groups (0.3%, 0.6%, 0.9% leucine from day 8 to day 18). Performance indicator analysis and tibial parameter analysis showed that leucine positively affected thiram-induced TD broilers. Additionally, mRNA expressions and protein levels of HIF-1α/VEGFA and Ihh/PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. The results showed that leucine recovered lameness disorder by downregulating the expression of HIF-1α, VEGFA, and PTHrP while upregulating the expression of Ihh. Moreover, the 16 S rRNA sequencing revealed that the leucine group demonstrated a decrease in the abundance of harmful bacteria compared to the TD group, with an enrichment of beneficial bacteria responsible for producing short-chain fatty acids, including Alistipes, Paludicola, CHKCI002, Lactobacillus, and Erysipelatoclostridium. In summary, the current study suggests that leucine could improve the symptoms of thiram-induced TD and maintain gut microbiota homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Osteocondrodisplasias , Animales , Tiram/toxicidad , Osteocondrodisplasias/inducido químicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinaria , Pollos , Leucina , Proteína Relacionada con la Hormona Paratiroidea , Disbiosis
7.
Animals (Basel) ; 14(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38672329

RESUMEN

Diarrhea-induced mortality among juvenile yaks is highly prevalent in the pastoral areas of the Qinghai-Tibet plateau. Although numerous diseases have been linked to the gut microbial community, little is known about how diarrhea affects the gut microbiota in yaks. In this work, we investigated and compared changes in the gut microbiota of juvenile yaks with diarrhea. The results demonstrated a considerable drop in the alpha diversity of the gut microbiota in diarrheic yaks, accompanied by Eysipelatoclostridium, Parabacteroides, and Escherichia-Shigella, which significantly increased during diarrhea. Furthermore, a PICRust analysis verified the elevation of the gut-microbial metabolic pathways in diarrhea groups, including glycine, serine, and threonine metabolism, alanine, aspartate, oxidative phosphorylation, glutamate metabolism, antibiotic biosynthesis, and secondary metabolite biosynthesis. Taken together, our study showed that the harmful bacteria increased, and beneficial bacteria decreased significantly in the gut microbiota of yaks with diarrhea. Moreover, these results also indicated that the dysbiosis of the gut microbiota may be a significant driving factor of diarrhea in yaks.

8.
Sci Total Environ ; 928: 172305, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593872

RESUMEN

Thiram is a member of the dithiocarbamate family and is widely used in agriculture, especially in low-income countries. Its residues lead to various diseases, among which tibial dyschondroplasia (TD) in broiler chickens is the most common. Recent studies have also demonstrated that thiram residues may harm human health. Our previous study showed that the activity of the mTOR (mammalian target of rapamycin) signaling pathway has changed after thiram exposure. In the current study, we investigated the effect of autophagy via the mTOR signaling pathway after thiram exposure in vitro and in vivo. Our results showed that thiram inhibited the protein expression of mTOR signaling pathway-related genes such as p-4EBP1 and p-S6K1. The analysis showed a significant increase in the expression of key autophagy-related proteins, including LC3, ULK1, ATG5, and Beclin1. Further investigation proved that the effects of thiram were mediated through the downregulation of mTOR. The mTOR agonist MHY-1485 reverse the upregulation of autophagy caused by thiram in vitro. Moreover, our experiment using knockdown of TSC1 resulted in chondrocytes expressing lower levels of autophagy. In conclusion, our results demonstrate that thiram promotes autophagy via the mTOR signaling pathway in chondrogenesis, providing a potential pharmacological target for the prevention of TD.


Asunto(s)
Autofagia , Pollos , Osteocondrodisplasias , Enfermedades de las Aves de Corral , Transducción de Señal , Serina-Treonina Quinasas TOR , Tiram , Animales , Tiram/toxicidad , Serina-Treonina Quinasas TOR/metabolismo , Autofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Osteocondrodisplasias/inducido químicamente , Osteocondrodisplasias/veterinaria , Enfermedades de las Aves de Corral/inducido químicamente , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Tibia/efectos de los fármacos , Herbicidas/toxicidad
9.
Int J Biol Macromol ; 266(Pt 2): 131109, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531520

RESUMEN

Water buffalo is the only mammal found to degrade lignin so far, and laccase plays an indispensable role in the degradation of lignin. In this study, multiple laccase genes were amplified based on the water buffalo rumen derived lignin-degrading bacteria Bacillus cereus and Ochrobactrum pseudintermedium. Subsequently, the corresponding recombinant plasmids were transformed into E. coli expression system BL21 (DE3) for induced expression by Isopropyl-ß-D-thiogalactopyranoside (IPTG). After preliminary screening, protein purification and enzyme activity assays, Lac3833 with soluble expression and high enzyme activity was selected to test its characteristics, especially the ability of lignin degradation. The results showed that the optimum reaction temperature of Lac3833 was 40 °C for different substrates. The relative activity of Lac3833 reached the highest at pH 4.5 and pH 5.5 when the substrates were ABTS or 2,6-DMP and guaiacol, respectively. Additionally, Lac3833 could maintain high enzyme activity in different temperatures, pH and solutions containing Na+, K+, Mg2+, Ca2+ and Mn2+. Importantly, compared to negative treatment, recombinant laccase Lac3833 treatment showed that it had a significant function in degrading lignin. In conclusion, this is a pioneering study to produce recombinant laccase with lignin-degrading ability by bacteria from water buffalo rumen, which will provide new insights for the exploitation of more lignin-degrading enzymes.


Asunto(s)
Búfalos , Clonación Molecular , Lacasa , Lignina , Proteínas Recombinantes , Rumen , Temperatura , Animales , Lacasa/genética , Lacasa/metabolismo , Lignina/metabolismo , Rumen/microbiología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Concentración de Iones de Hidrógeno , Expresión Génica , Escherichia coli/genética , Escherichia coli/metabolismo , Bacterias/enzimología , Bacterias/genética , Especificidad por Sustrato
10.
Cell Commun Signal ; 22(1): 2, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169388

RESUMEN

BACKGROUND: The B-cell lymphoma 2 (Bcl-2) protein regulates programmed cell death throughout the disease conditions by upholding apoptotic pathways. However, the mechanism by which it's expressed in chondrocytes still needs to be studied in chondrocyte-related disorders. Additionally, exploring the potential therapeutic role of Chlorogenic acid (CGA) in confluence with Bcl-2 modulation is of significant interest. METHODS: In vivo and in vitro studies were performed according to our previous methodologies. The chondrocytes were cultured in specific growth media under standard conditions after expression verification of different microRNAs through high-throughput sequencing and verification of Bcl-2 involvement in tibial growth plates. The effect of Bcl-2 expression was investigated by transfecting chondrocytes with miR-460a, siRNA, and their negative controls alone or in combination with CGA. The RNA was extracted and subjected to a reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blot analysis and immunofluorescence assays were performed to visualize the intracellular localization of Bcl-2 and associated proteins related to apoptotic and inflammasome pathways. Moreover, apoptosis through flow cytometry was also performed to understand the modulation of concerning pathways. RESULTS: The suppression of Bcl-2 induced higher apoptosis and mitochondrial dysfunction, leading to IL-1ß maturation and affecting the inflammasome during chondrocyte proliferation. Conversely, overexpression attenuated the activation, as evidenced by reduced caspase activity and IL-1ß maturation. In parallel, CGA successfully reduced siRNA-induced apoptosis by decreasing Cytochrome C (Cyto C) release from the mitochondria to the cytoplasm, which in turn decreased Caspase-3 and Caspase-7 cleavage with Bcl-2-associated X protein (Bax). Furthermore, siBcl-2 transfection and CGA therapy increased chondrocyte proliferation and survival. The CGA also showed a promising approach to maintaining chondrocyte viability by inhibiting siRNA-induced apoptosis. CONCLUSIONS: Targeting Bcl-2-mediated regulation might be a possible treatment for chondrocyte-related conditions. Moreover, these results add knowledge of the complicated processes underlying chondrocyte function and the pathophysiology of related diseases, highlighting the significance of target specific therapies. Video Abstract.


Asunto(s)
Condrocitos , MicroARNs , Condrocitos/metabolismo , Inflamasomas/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/metabolismo , Apoptosis , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/metabolismo , Interleucina-1beta/metabolismo
11.
Appl Microbiol Biotechnol ; 108(1): 139, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229401

RESUMEN

Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.


Asunto(s)
Bacillus licheniformis , Enfermedades Intestinales , Probióticos , Animales , Ratones , Bovinos , Antibacterianos/farmacología , Suplementos Dietéticos , Probióticos/farmacología , Enfermedades Intestinales/microbiología , Firmicutes/genética , Cefalexina
12.
Int J Biol Macromol ; 254(Pt 2): 127808, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37926310

RESUMEN

Gut microbiota and their metabolic processes depend on the intricate interplay of gut microbiota and their metabolic processes. Bacillus licheniformis, a beneficial food supplement, has shown promising effects on stabilizing gut microbiota and metabolites. However, the precise mechanisms underlying these effects remain elusive. In this study, we investigated the impact of polysaccharide-producing B. licheniformis as a dietary supplement on the gut microbiome and metabolites through a combination of scanning electron microscopy (SEM), histological analysis, high-throughput sequencing (HTS), and metabolomics. Our findings revealed that the B. licheniformis-treated group exhibited significantly increased jejunal goblet cells. Moreover, gut microbial diversity was lower in the treatment group as compared to the control, accompanied by noteworthy shifts in the abundance of specific bacterial taxa. Enrichment of Firmicutes, Lachnospiraceae, and Clostridiales_bacterium contrasted with reduced levels of Campylobacterota, Proteobacteria, Parasutterella, and Helicobacter. Notably, the treatment group showed significant weight gain after 33 days, emphasizing the polysaccharide's impact on host metabolism. Delving into gut metabolomics, we discovered significant alterations in metabolites. Nine metabolites, including olprinone, pyruvic acid, and 2-methyl-3-oxopropanoate, were upregulated, while eleven, including defoslimod and voclosporin were down-regulated, shedding light on phenylpropanoid biosynthesis, tricarboxylic acid cycle (TCA cycle), and the glucagon signaling pathway. This comprehensive multi-omics analysis offers compelling insights into the potential of B. licheniformis as a dietary polysaccharide supplement for gut health and host metabolism, promising significant implications for gut-related issues.


Asunto(s)
Bacillus licheniformis , Microbioma Gastrointestinal , Animales , Bovinos , Multiómica , Tibet , Metabolómica , Suplementos Dietéticos , Bacterias , Polisacáridos/farmacología , ARN Ribosómico 16S
13.
Animals (Basel) ; 13(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38136788

RESUMEN

Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-ß (TGF-ß), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.

14.
Ecotoxicol Environ Saf ; 268: 115689, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992645

RESUMEN

Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4-7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8-18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia.


Asunto(s)
Osteocondrodisplasias , Tiram , Animales , Tiram/toxicidad , Osteocondrodisplasias/inducido químicamente , Osteocondrodisplasias/genética , Pollos , Condrocitos/patología , Caspasa 9/genética , Cojera Animal , Apoptosis , Neovascularización Patológica/inducido químicamente , Proliferación Celular
15.
MethodsX ; 11: 102450, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38023301

RESUMEN

The mechanical-double enzyme method was used in the current study to isolate and culture primary chondrocytes from the chicken growth plates. The feasibility and practicability of the approach were determined by using trypan blue staining, toluidine blue staining, PCR, and flow cytometry. The immunofluorescence assay was also used to effectively identify chondrocytes, demonstrating the expression of chondrocyte-specific secreted products (Col-II and Aggrecan). The exterior morphology of chondrocytes was studied at several stages, revealing significant changes in cell shape with each generation. Notably, compared to earlier approaches, the mechanical-double enzyme strategy revealed enhanced cell adhesion and much reduced apoptosis rates. The findings indicate that this novel method has great potential for efficient primary chondrocytes culture, providing important insight into chondrocyte ba research and future applications in cartilage tissue engineering. The following technical points are included in this method:•Isolation and culturing primary chondrocytes by a mechanical-double enzyme approach.•The evaluation of cell adhesion and apoptosis of mechanical double enzyme approach as compared to previous approaches.•The confirmation of chondrocyte-specific secreted products' expression via toluidine blue staining, PCR, and immunofluorescence assays.

16.
Artículo en Inglés | MEDLINE | ID: mdl-37740881

RESUMEN

The gut microbiota is the largest and most complex ecosystem consisting of trillions of microorganisms, which influenced by various external factors. As an important probiotic species, Lactobacillus helps to improve gut microbial diversity and composition, underlying potential efficacy in growth performance and disease prevention. However, limited studies have been investigated the relationship between Lactobacillus sakei and intestinal health in dogs. In this study, dogs in the two groups were fed a standard diet (group C, n = 8) and Lactobacillus sakei diet (group P, n = 8), respectively. The growth performance, serum biochemical indices, antioxidant capacity, gut microbiota, and metabolism of dogs in both groups were studied. Results from growth trials showed that L. sakei can significantly improve the growth performance of dogs, including increased weight gain (p < 0.05), serum biochemical indices, i.e., ALP, TP, and ALB (p < 0.05), and better antioxidant capacity, i.e., SOD and GSH-Px (p < 0.05). Significant changes in the gut microbial composition were detected in dogs fed Lactobacillus sakei, as evidenced by an increase in the level of Firmicutes, Spirochaetota, and Patescibacteria, all of them play an important role in maintaining intestinal health. Moreover, a decrease in the level of microorganisms that threaten health, such as Mucispirillum and Clostridium_sensu_stricto_13. The metabolic analysis showed that the Lactobacillus sakei enhanced metabolic pathways such as vitamin B6 metabolism, glutathione metabolism, retinol metabolism, and fatty acid degradation. Our findings suggested that Lactobacillus sakei supplementation had beneficial effects on the growth performance and health status of dogs by improving gut microbiota balance and promoting metabolism. There are an estimated 200 million dogs in China, and the population is continuing to grow at a rapid pace. It is essential to explore an effective way to promote health in dogs. Intestinal diseases, particularly colitis and diarrhea, are common clinical conditions in dogs and are associated with gut microbiota. Lactobacillus sakei, as an important species of probiotics, the relationship between L. sakei and intestinal health in dogs remains unclear. Our study suggests that L. sakei significantly promotes growth performance and health states involving weight gain, regulation of gut microbiota, and metabolism. Overall, our findings shed light on the potential role of L. sakei as an alternative in promoting health in dogs.

17.
Front Microbiol ; 14: 1171074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547685

RESUMEN

Lactic acid bacteria (LAB) are organic supplements that have several advantages for the health of the host. Tibetan chickens are an ancient breed, which evolve unique gut microbiota due to their adaptation to the hypoxic environment of high altitude. However, knowledge of LAB isolated from Tibetan chickens is very limited. Thus, the purpose of this study was to assess the probiotic properties of Lactobacillus Plantarum (LP1), Weissella criteria (WT1), and Pediococcus pentosaceus (PT2) isolated from Tibetan chickens and investigate their effects on growth performance, immunoregulation and intestinal microbiome in broiler chickens. Growth performance, serum biochemical analysis, real-time PCR, and 16S rRNA sequencing were performed to study the probiotic effects of LP1, WT1, and PT2 in broiler chickens. Results showed that LP1, WT1 and PT2 were excellent inhibitors against Escherichia coli (E. coli ATCC25922), meanwhile, LP1, WT1, and PT2 significantly increased weekly weight gain, villus height, antioxidant ability and gut microbiota diversity indexes in broilers. In addition, LP1 and PT2 increased the relative abundance of Lactobacillus and decreased Desulfovibrio in comparison with T1 (control group). Additionally, oral LAB can reduce cholesterol and regulate the expression of tight junction genes in broiler chickens, suggesting that LAB can improve the integrity of the cecal barrier and immune response. In conclusion, LAB improved the growth performance, gut barrier health, intestinal flora balance and immune protection of broiler chickens. Our findings revealed the uniqueness of LAB isolated from Tibetan chickens and its potential as a probiotic additive in poultry field.

18.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446153

RESUMEN

There is evidence to suggest that microRNA-140-5p (miR-140), which acts as a suppressor, is often elevated and has a role in various malignancies. Nevertheless, neither the function nor the mechanisms in chondrocytes linked with bone disorders, e.g., tibial dyschondroplasia (TD), have been satisfactorily established. The purpose of this study was to look into the role of microRNA-140-5p (miR-140) and its interaction with HDAC4 in chondrocytes, as well as the implications for tibial dyschondroplasia (TD), with a particular focus on the relationship between low miR-140 expression and poor pathologic characteristics, as well as its physiological effects on chondrocyte growth, differentiation, and chondrodysplasia. In this investigation, we discovered that TD had a reduced expression level of the miR-140. There was a correlation between low miR-140 expression, poor pathologic characteristics, and the short overall survival of chondrocytes. Our findings show an aberrant reduction in miR-140 expression, and HDAC4 overexpression caused disengagement in resting and proliferation zones. This further resulted in uncontrolled cell proliferation, differentiation, and chondrodysplasia. Mechanistically, HDAC4 inhibited the downstream transcription factors MEF2C and Runx2 and interacted with Col-Ⅱ, Col-X, and COMP. However, miR-140 binding to the 3'-UTR of HDAC4 resulted in the growth and differentiation of chondrocytes. Moreover, the expression of HDAC4 through LMK-235 was significantly decreased, and the expression was significantly increased under ITSA-1, referring to a positive feedback circuit of miR-140 and HDAC4 for endochondral bone ossification. Furthermore, as a prospective treatment, the flavonoids of Rhizoma drynariae (TFRD) therapy increased the expression of miR-140. Compared to the TD group, TFRD treatment increased the expression of growth-promoting and chondrocyte differentiation markers, implying that TFRD can promote chondrocyte proliferation and differentiation in the tibial growth plate. Hence, directing this circuit may represent a promising target for chondrocyte-related bone disorders and all associated pathological bone conditions.


Asunto(s)
MicroARNs , Osteocondrodisplasias , Humanos , Condrocitos/metabolismo , Tiram , Osteocondrodisplasias/metabolismo , Diferenciación Celular/genética , MicroARNs/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo
19.
Viruses ; 15(4)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-37112860

RESUMEN

Lumpy skin disease virus (LSDV) is capable of causing transboundary diseases characterized by fever, nodules on the skin, mucous membranes, and inner organs. The disease may cause emaciation with the enlargement of lymph nodes and sometimes death. It has had endemic importance in various parts of Asia in recent years, causing substantial economic losses to the cattle industry. The current study reported a suspected LSDV infection (based on signs and symptoms) from a mixed farm of yak and cattle in Sichuan Province, China. The clinical samples were found positive for LSDV using qPCR and ELISA, while LSDV DNA was detected in Culex tritaeniorhynchus Giles. The complete genome sequence of China/LSDV/SiC/2021 was determined by Next-generation sequencing. It was found that China/LSDV/SiC/2021 is highly homologous to the novel vaccine-related recombinant LSDV currently emerging in China and countries surrounding China. Phylogenetic tree analysis revealed that the novel vaccine-associated recombinant LSDV formed a unique dendrograms topology between field and vaccine-associated strains. China/LSDV/SiC/2021 was found to be a novel recombinant strain, with at least 18 recombination events via field viruses identified in the genome sequence. These results suggest that recombinant LSDV can cause high mortality in yaks, and its transmission might be due to the Culex tritaeniorhynchus Giles, which acts as a mechanical vector.


Asunto(s)
Culex , Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Virus de la Dermatosis Nodular Contagiosa/genética , Filogenia , Mosquitos Vectores , Brotes de Enfermedades/veterinaria
20.
Vet Sci ; 10(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36669047

RESUMEN

A total of 1158 cats with feline upper respiratory tract infection were incorporated from twenty animal hospitals in Wuhan, China, from April 2019 to April 2022 to investigate the epidemiology of feline calicivirus (FCV), herpesvirus-1 (FHV-1), Mycoplasma felis (M. felis) and Chlamydia felis (C. felis) for the development of a geographically-specific FCV vaccine with reference to prevalence and risk factors for infection. The 871 samples (75.2%) of kittens were younger than 12 months, of which 693 were males, and 456 were females. Among the samples, 443 were British shorthair cats, accounting for 38.3%, and 252 were Chinese rural cats, accounting for 21.8%. PCR/RT-PCR detection of the above four viruses (FCV, FHV-1, M. felis, and C. felis) in the upper respiratory tract of cats showed that the total positive samples were 744 (64.3%), including 465 positive samples of feline calicivirus, accounting for 40.2% of the total 1158 samples. There were 311 positive samples of M. felis, accounting for 26.9% of the total samples, ranked second in clinical practice. The 180 positive samples of feline herpesvirus accounted for 15.5%, and 85 positive samples of Chlamydia felis accounted for 7.3%. Among them, the number of positive samples of single pathogenic infections was 493, accounting for 66.3% of the total 744 positive samples. Double, triple, and quadruple infections accounted for 28.2%, 5.0%, and 0.5%, respectively, with the highest proportion of single infections. The molecular biological characteristics of the 17 isolated FCVd strains in Wuhan were further analyzed. It was found that the F9 vaccine strain and the antigenic epitopes in the 5'HVR of the E region were collated with the F9 vaccine strain. Moreover, phylogenetic tree analysis showed that the strains related to the F9 and 255 vaccines were distantly related, leading to the failure of the vaccine. In addition, the strains associated with the F9 and 255 vaccines were distant, which might lead to vaccine failure in anticipation of the development of a more phylogenetically close FCV vaccine in China and may require the development of a vaccine for a locally related FCV strain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...