Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Ecotoxicol Environ Saf ; 287: 117262, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39476650

RESUMEN

High selenium (Se) levels can induce toxicity, inhibit growth, and affect gene expression and metabolite content in plants. However, the molecular mechanism by which high Se stress affects soybean plants remains unclear. This study examined the responses of soybean leaves and roots to high Se stress using transcriptome and metabolome analyses. High Se stress significantly inhibited soybean root growth, reduced leaf area, and affected the antioxidant enzyme system in roots and leaves, resulting in the accumulation of malondialdehyde (MDA). High Se stress increased indoleacetic acid (IAA), abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) in the roots by 3.34-fold, 8.94-fold, 0.25-fold, and 5.65-fold, respectively. Similarly, high Se stress increased IAA, ABA, JA, and SA in the leaves by 1.96-fold, 10.54-fold, 2.03-fold, and 4.22-fold, respectively. In addition, high Se stress affected ion absorption and transport in soybean plants. Transcriptome results showed that there were 10,038 differentially expressed genes (DEGs) in soybean roots and 5811 DEGs in leaves, which affected the expression of antioxidant enzymes, ion transport and hormone-related genes. Metabolome results revealed that there were 277 differentially expressed metabolites (DEMs) in soybean leaves and 312 DEMs in roots. Soybean roots and leaves were significantly enriched in the "ß-alanine metabolism" pathway under high Se stress, with differential expression of Aldehyde dehydrogenase (ALDH), Amine oxidase (AO), and other related genes, thereby relieving oxidative stress. This study improves our understanding of the molecular mechanisms underlying the responses of soybean plants to high Se stress and provides a basis for breeding Se-enriched soybean plants.

2.
Pest Manag Sci ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319635

RESUMEN

BACKGROUND: Paracoccus marginatus has invaded many countries, spreading rapidly and causing significant economic losses to crops. Accurate detection during the monitoring process is critical to prevent its expansion into new areas, therefore it is necessary to develop efficient and reliable detection methods. Traditional detection methods are time-consuming and instrument-dependent owing to the morphological similarities and small sizes of P. marginatus and other mealybugs, therefore establishing an efficient, rapid, and sensitive method for field detection in resource-limited settings is critical. RESULTS: A sensitive and rapid detection system was developed to detect P. marginatus using recombinase polymerase amplification (RPA) combined with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a. The RPA-CRISPR/Cas12a assay distinguished P. marginatus from 10 other mealybugs. The entire process can be completed in approximately an hour, and the identification results can be determined by the naked eye using lateral flow strips or a portable mini-UV torch. A method was developed to extract DNA from P. marginatus within 5 min. This method was combined with the RPA-CRISPR/Cas12a assay to achieve rapid and simple detection. In addition, two portable thermos cups with temperature displays were used to maintain the reagents and assay reactions in the field. CONCLUSION: This assay represents the first application of portable and easily available items (mini-UV torch and thermos cup) based on the combination of RPA and CRISPR/Cas12a for rapid pest detection. This method is rapid, highly specific, and instrument-flexible, allowing for the early monitoring of P. marginatus in the field. This study provides guidance for the development of suitable management strategies. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39285310

RESUMEN

BACKGROUND AND AIM: Currently, hepatitis B virus-related acute liver failure (HBV-ALF) has limited treatment options. Studies have shown that histone lactylation plays a role in the progression of liver-related diseases. Therefore, it is essential to explore lactylation-related gene (LRGs) biomarkers in HBV-ALF to provide new information for the treatment of HBV-ALF. METHODS: Two HBV-ALF-related datasets (GSE38941 and GSE14668) and 65 LRGs were used. First, the differentially expressed genes (DEGs) were derived from differential expression analysis, the key module genes from weighted gene co-expression network analysis; and LRGs were used to intersect to obtain the candidate genes. Subsequently, the feature genes obtained from least absolute shrinkage and selection operator regression analysis and support vector machine analysis were intersected to obtain the candidate key genes. Among them, genes with consistent and significant expression trends in both GSE38941 and GSE14668 were used as biomarkers. Subsequently, biomarkers were analyzed for functional enrichment, immune infiltration, and sensitive drug prediction. RESULTS: In this study, five candidate genes (PIGM, PIGA, EGR1, PIGK, and PIGL) were identified by intersecting 6461 DEGs and 2496 key module genes with 65 LRGs. We then screened four candidate key genes from the machine learning algorithm, among which PIGM and PIGA were considered biomarkers in HBV-ALF. Moreover, the results of enrichment analysis showed that the significant enrichment signaling pathways for biomarkers included allograft rejection and valine, leucine, and isoleucine degradation. Thereafter, 11 immune cells differed significantly between groups, with resting memory CD4+ T cells having the strongest positive correlation with biomarkers. Methylphenidate hydrochloride is a potential therapeutic drug for PIGM. CONCLUSION: Two genes, PIGM and PIGA, were identified as biomarkers related to LRGs in HBV-ALF, providing a basis for understanding HBV-ALF pathogenesis.

4.
Materials (Basel) ; 17(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39336339

RESUMEN

This paper employed squeeze-casting (SC) technology to develop a novel Al-7Si-1.5Cu-1.2Ni-0.4Mg-0.3Mn-0.15Ti heat-resistant alloy, addressing the issue of low room/high temperature elongation in traditional gravity casting (GC). Initially, the effects of SC and GC processes on the microstructure and properties of the alloy were investigated, followed by an examination of the evolution of the microstructure and properties of the SC samples over thermal exposure time. The results indicate that the SC process significantly improves the alloy's microstructure. Compared to the GC alloy, the secondary dendrite arm spacing of the as-cast SC alloy is refined from 50.5 µm to 18.5 µm. Meanwhile, the size and roundness of the eutectic Si phase in the T6-treated SC alloy are optimized from 11.7 µm and 0.75 µm to 9.5 µm and 0.85 µm, respectively, and casting defects such as porosity are reduced. Consequently, the ultimate tensile strengths (UTSs) at room temperature and at 250 °C of the SC alloy are 5% and 4.9% higher than that of GC alloy, respectively, and its elongation at both temperatures shows significant improvement. After thermal exposure at 250 °C for 120 h, the morphology of the residual second phase at the grain boundaries in the SC alloy becomes more rounded, but the eutectic Si and nano-precipitates undergo significant coarsening, resulting in a 49% decrease in UTS.

5.
PLoS One ; 19(9): e0309156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39236035

RESUMEN

In this study, we conducted two heat treatment processes, namely double aging (DA) and solid solution followed by double aging (SA), on the Inconel 718 alloy fabricated by selective laser melting (SLM). The aim was to investigate the microstructure evolution and mechanical properties of Inconel 718 under different heat treatment conditions. To achieve this, we employed advanced techniques such as Scanning Electron Microscope (SEM), electron backscattered diffraction (EBSD), energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), Tofwerk time-of-flight secondary ion mass spectrometer (TOF-SIMS), and transmission electron microscopy (TEM). Our experimental findings reveal the presence of cellular high-density dislocation substructures in the as-received (AR) specimens, with a significant accumulation of Laves phase precipitates at grain boundaries and subgrain boundaries. After the DA treatment, the cellular substructure persists, with higher concentrations of γ" and γ' strengthened phases compared to AR specimen. Conversely, the SA specimen undergoes almost complete recrystallization, resulting in the dissolution of brittle Laves phases and a substantial increase in the content of strengthening phase γ'' and γ'. As a consequence of the precipitation of the γ'' and γ' strengthened phase and the modification of the microstructure, the material exhibits enhanced strength and hardness, albeit at the expense of reduced plasticity. The investigation of the relationship between heat treatment processes and precipitation behavior indicates that the SA heat treatment yields favorable mechanical properties that strike a balance between strength and plasticity.


Asunto(s)
Aleaciones , Calor , Rayos Láser , Aleaciones/química , Ensayo de Materiales , Difracción de Rayos X , Microscopía Electrónica de Rastreo
6.
Alzheimers Dement ; 20(9): 6045-6059, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39129270

RESUMEN

INTRODUCTION: Frontotemporal dementia (FTD) can be phenotypically divided into behavioral variant FTD (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA). However, the neural underpinnings of this phenotypic heterogeneity remain elusive. METHODS: Cortical morphology, white matter hyperintensities (WMH), diffusion tensor image analysis along the perivascular space (DTI-ALPS), and their interrelationships were assessed in subtypes of FTD. Neuroimaging-transcriptional analyses on the regional cortical morphological deviances among subtypes were also performed. RESULTS: Changes in cortical thickness, surface area, gyrification, WMH, and DTI-ALPS were subtype-specific in FTD. The three morphologic indices are related to whole-brain WMH volume and cognitive performance, while cortical thickness is related to DTI-ALPS. Neuroimaging-transcriptional analyses identified key biological pathways linked to the formation and/or spread of TDP-43/tau pathologies. DISCUSSION: We found subtype-specific changes in cortical morphology, WMH, and glymphatic function in FTD. Our findings have the potential to contribute to the development of personalized predictions and treatment strategies for this disorder. HIGHLIGHTS: Cortical morphologic changes, white matter hyperintensities (WMH), and glymphatic dysfunction are subtype-specific. Cortical morphologic changes, WMH, and glymphatic dysfunction are inter-correlated. Cortical morphologic changes and WMH burden contribute to cognitive impairments.


Asunto(s)
Corteza Cerebral , Imagen de Difusión Tensora , Demencia Frontotemporal , Sustancia Blanca , Humanos , Demencia Frontotemporal/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Anciano , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Sistema Glinfático/patología , Sistema Glinfático/diagnóstico por imagen , Neuroimagen , Imagen por Resonancia Magnética
8.
Nat Commun ; 15(1): 6740, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112531

RESUMEN

Glioblastoma (GBM) is the most common brain tumor and remains incurable. Primary GBM cultures are widely used tools for drug screening, but there is a lack of genomic and pharmacological characterization for these primary GBM cultures. Here, we collect 50 patient-derived glioma cell (PDGC) lines and characterize them by whole genome sequencing, RNA sequencing, and drug response screening. We identify three molecular subtypes among PDGCs: mesenchymal (MES), proneural (PN), and oxidative phosphorylation (OXPHOS). Drug response profiling reveals that PN subtype PDGCs are sensitive to tyrosine kinase inhibitors, whereas OXPHOS subtype PDGCs are sensitive to histone deacetylase inhibitors, oxidative phosphorylation inhibitors, and HMG-CoA reductase inhibitors. PN and OXPHOS subtype PDGCs stably form tumors in vivo upon intracranial transplantation into immunodeficient mice, whereas most MES subtype PDGCs fail to form tumors in vivo. In addition, PDGCs cultured by serum-free medium, especially long-passage PDGCs, carry MYC/MYCN amplification, which is rare in GBM patients. Our study provides a valuable resource for understanding primary glioma cell cultures and clinical translation and highlights the problems of serum-free PDGC culture systems that cannot be ignored.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Ratones , Glioma/genética , Glioma/patología , Glioma/tratamiento farmacológico , Glioma/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Femenino , Masculino , Secuenciación Completa del Genoma , Ensayos Antitumor por Modelo de Xenoinjerto , Genómica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Multiómica
9.
Cell Commun Signal ; 22(1): 386, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090602

RESUMEN

BACKGROUND: T-LAK cell-oriented protein kinase (TOPK) strongly promotes the malignant proliferation of cancer cells and is recognized as a promising biomarker of tumor progression. Psoriasis is a common inflammatory skin disease featured by excessive proliferation of keratinocytes. Although we have previously reported that topically inhibiting TOPK suppressed psoriatic manifestations in psoriasis-like model mice, the exact role of TOPK in psoriatic inflammation and the underlying mechanism remains elusive. METHODS: GEO datasets were analyzed to investigate the association of TOPK with psoriasis. Skin immunohistochemical (IHC) staining was performed to clarify the major cells expressing TOPK. TOPK conditional knockout (cko) mice were used to investigate the role of TOPK-specific deletion in IMQ-induced psoriasis-like dermatitis in mice. Flow cytometry was used to analyze the alteration of psoriasis-related immune cells in the lesional skin. Next, the M5-induced psoriasis cell model was used to identify the potential mechanism by RNA-seq, RT-RCR, and western blotting. Finally, the neutrophil-neutralizing antibody was used to confirm the relationship between TOPK and neutrophils in psoriasis-like dermatitis in mice. RESULTS: We found that TOPK levels were strongly associated with the progression of psoriasis. TOPK was predominantly increased in the epidermal keratinocytes of psoriatic lesions, and conditional knockout of TOPK in keratinocytes suppressed neutrophils infiltration and attenuated psoriatic inflammation. Neutrophils deletion by neutralizing antibody greatly diminished the suppressive effect of TOPK cko in psoriasis-like dermatitis in mice. In addition, topical application of TOPK inhibitor OTS514 effectively attenuated already-established psoriasis-like dermatitis in mice. Mechanismly, RNA-seq revealed that TOPK regulated the expression of some genes in the IL-17 signaling pathway, such as neutrophils chemokines CXCL1, CXCL2, and CXCL8. TOPK modulated the expression of neutrophils chemokines via activating transcription factors STAT3 and NF-κB p65 in keratinocytes, thereby promoting neutrophils infiltration and psoriasis progression. CONCLUSIONS: This study identified a crucial role of TOPK in psoriasis by regulating neutrophils infiltration, providing new insights into the pathogenesis of psoriasis.


Asunto(s)
Queratinocitos , Quinasas de Proteína Quinasa Activadas por Mitógenos , Infiltración Neutrófila , Psoriasis , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Imiquimod , Queratinocitos/patología , Queratinocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo , Neutrófilos/patología , Psoriasis/patología , Psoriasis/genética , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Regulación hacia Arriba , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
10.
ACS Nano ; 18(33): 21747-21778, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105765

RESUMEN

Two-dimensional (2D) materials with excellent properties and widespread applications have been explosively investigated. However, their conventional synthetic methods exhibit concerns of limited scalability, complex purification process, and incompetence of prohibiting their restacking. The blowing strategy, characterized by gas-template, low-cost, and high-efficiency, presents a valuable avenue for the synthesis of 2D-based foam materials and thereby addresses these constraints. Whereas, its comprehensive introduction has been rarely outlined so far. This review commences with a synopsis of the blowing strategy, elucidating its development history, the statics and kinetics of the blowing process, and the choice of precursor and foaming agents. Thereafter, we dwell at length on across-the-board foams enabled by the blowing route, like BxCyNz foams, carbon foams, and diverse composite foams consisting of carbon and metal compounds. Following that, a wide-ranging evaluation of the functionality of the foam products in fields such as energy storage, electrocatalysis, adsorption, etc. is discussed, revealing their distinctive strength originated from the foam structure. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future research priorities in this rapidly developing method.

11.
BMC Med Educ ; 24(1): 821, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080590

RESUMEN

BACKGROUND: Effective interprofessional teamwork is essential for the efficiency, safety and quality of healthcare system services and requires interprofessional education for medical students. Physical education is a simple and easy way to teach teamwork, which translates into team performance in the work environment. This study was conducted to examine the effectiveness of the physical education competition model, instead of the exams model, for improving teamwork skills among medical students. METHODS: A quasiexperimental intervention design was used to measure the effect of a 16-week cheerleading programme on subjects' teamwork skills by completing a teamwork scale comprising four subdimensions, namely, personal characteristics, teamwork, leadership, and conflict management, before the start and at the end of the programme, and by comparing nonwinning to winning students to measure the effect of teamwork skills on team performance. RESULTS: A total of 179 students completed the valid baseline and posttest (effective rate = 95.21%). The teamwork scale scores (B M = 4.81, R M = 5.05, p < 0.001) and 4 subdimension scores (personal characteristics p = 0.002, teamwork p = 0.028, leadership p < 0.001, conflict management p < 0.001) were statistically significant. Twenty-two of the 44 items in the scale improved significantly. The differences between students who won the competition and those who did not (N M=4.86, W M=5.14, p<0.01) were statistically significant, with no significant differences in personal characteristics p = 0.183; significant differences in the 3 subdimensions of teamwork p < 0.01, leadership p = 0.024, and conflict management p = 0.037; and a significant increase in 13 out of 44 self-efficacy items on the scale. CONCLUSIONS: The "race for exams" physical education programme improved teamwork among medical students, and increased teamwork improved team performance. The "competition instead of examination" physical education programme provides a quantifiable method for improving interprofessional teamwork among medical students.


Asunto(s)
Curriculum , Relaciones Interprofesionales , Estudiantes de Medicina , Humanos , Masculino , Femenino , Deportes , Adulto Joven , Liderazgo , Conducta Cooperativa , Conducta Competitiva , Educación de Pregrado en Medicina , Grupo de Atención al Paciente
12.
ACS Biomater Sci Eng ; 10(8): 5094-5107, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38979636

RESUMEN

Intervertebral disc (IVD) herniation is a leading cause of disability and lower back pain, causing enormous socioeconomic burdens. The standard of care for disc herniation is nucleotomy, which alleviates pain but does not repair the annulus fibrosus (AF) defect nor recover the biomechanical function of the disc. Existing bioadhesives for AF repair are limited by insufficient adhesion and significant mechanical and geometrical mismatch with the AF tissue, resulting in the recurrence of protrusion or detachment of bioadhesives. Here, we report a composite hydrogel sealant constructed from a composite of a three-dimensional (3D)-printed thermoplastic polyurethane (TPU) mesh and tough hydrogel. We tailored the fiber angle and volume fraction of the TPU mesh design to match the angle-ply structure and mechanical properties of native AF. Also, we proposed and tested three types of geometrical design of the composite hydrogel sealant to match the defect shape and size. Our results show that the sealant could mimic native AF in terms of the elastic modulus, flexural modulus, and fracture toughness and form strong adhesion with the human AF tissue. The bovine IVD tests show the effectiveness of the composite hydrogel sealant for AF repair and biomechanics recovery and for preventing herniation with its heightened stiffness and superior adhesion. By harnessing the combined capabilities of 3D printing and bioadhesives, these composite hydrogel sealants demonstrate promising potential for diverse applications in tissue repair and regeneration.


Asunto(s)
Anillo Fibroso , Hidrogeles , Animales , Anillo Fibroso/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Bovinos , Humanos , Impresión Tridimensional , Poliuretanos/química , Poliuretanos/farmacología , Adhesivos Tisulares/farmacología , Adhesivos Tisulares/química
13.
Neurosurg Focus ; 56(6): E16, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38823054

RESUMEN

OBJECTIVE: Craniocervical dystonia (CCD) is a common type of segmental dystonia, which is a disabling disease that has been frequently misdiagnosed. Blepharospasm or cervical dystonia is the most usual symptom initially. Although deep brain stimulation (DBS) of the globus pallidus internus (GPi) has been widely used for treating CCD, its clinical outcome has been primarily evaluated in small-scale studies. This research examines the sustained clinical effectiveness of DBS of the GPi in individuals diagnosed with CCD. METHODS: The authors report 24 patients (14 women, 10 men) with refractory CCD who underwent DBS of the GPi between 2016 and 2023. The severity and disability of the dystonia were evaluated using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). The BFMDRS scores were collected preoperatively, 6 months postoperatively, and at the most recent follow-up visit. RESULTS: The mean age at onset was 52.0 ± 11.0 years (range 33-71 years) and the mean disease duration was 63.3 ± 73.3 months (range 7-360 months) (values for continuous variables are expressed as the mean ± SD). The mean follow-up period was 37.5 ± 23.5 months (range 6-84 months). The mean total BFMDRS motor scores at the 3 different time points were 13.3 ± 9.4 preoperatively, 5.0 ± 4.7 (55.3% improvement, p < 0.001) at 6 months, and 4.5 ± 3.6 (56.6% improvement, p < 0.001) at last follow-up. The outcomes were deemed poor in 6 individuals. CONCLUSIONS: Inferences drawn from the findings suggest that DBS of the GPi has long-lasting effectiveness and certain limitations in managing refractory CCD. The expected stability of the clinical outcome is not achieved. Patients with specific types of dystonia might consider targets other than GPi for a more precise therapy.


Asunto(s)
Estimulación Encefálica Profunda , Globo Pálido , Humanos , Estimulación Encefálica Profunda/métodos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Estudios de Seguimiento , Resultado del Tratamiento , Tortícolis/terapia , Trastornos Distónicos/terapia
14.
Plants (Basel) ; 13(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38931038

RESUMEN

Aluminum (Al) toxicity in acidic soils can significantly reduce peanut yield. The physiological response of peanut leaves to Al poisoning stress still has not been fully explored. This research examined the influences of Al toxicity on peanut leaves by observing the leaf phenotype, scanning the leaf area and perimeter, and by measuring photosynthetic pigment content, physiological response indices, leaf hormone levels, and mineral element accumulation. Fluorescence quantitative RT-PCR (qPCR) was utilized to determine the relative transcript level of specific genes. The results indicated that Al toxicity hindered peanut leaf development, reducing their biomass, surface area, and perimeter, although the decrease in photosynthetic pigment content was minimal. Al toxicity notably affected the activity of antioxidative enzymes, proline content, and MDA (malondialdehyde) levels in the leaves. Additionally, Al poisoning resulted in the increased accumulation of iron (Fe), potassium (K), and Al in peanut leaves but reduced the levels of calcium (Ca), manganese (Mn), copper (Cu), zinc (Zn), and magnesium (Mg). There were significant changes in the content of hormones and the expression level of genes connected with hormones in peanut leaves. High Al concentrations may activate cellular defense mechanisms, enhancing antioxidative activity to mitigate excess reactive oxygen species (ROS) and affecting hormone-related gene expression, which may impede leaf biomass and development. This research aimed to elucidate the physiological response mechanisms of peanut leaves to Al poisoning stress, providing insights for breeding new varieties resistant to Al poisoning.

15.
Front Neurol ; 15: 1382136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711563

RESUMEN

Objective: Among adolescents with depression, the occurrence of non-suicidal self-injury (NSSI) behavior is prevalent, constituting a high-risk factor for suicide. However, there has been limited research on the neuroimaging mechanisms underlying adolescent depression and NSSI behavior, and the potential association between the two remains unclear. Therefore, this study aims to investigate the alterations in functional connectivity (FC) of the regions in the prefrontal cortex with the whole brain, and elucidates the relationship between these alterations and NSSI behavior in adolescents with depression. Methods: A total of 68 participants were included in this study, including 35 adolescents with depression and 33 healthy controls. All participants underwent assessments using the 17-item Hamilton Depression Rating Scale (17-HAMD) and the Ottawa Self-Harm Inventory. In addition, functional magnetic resonance imaging (fMRI) data of the participants' brains were collected. Subsequently, the FCs of the regions in the prefrontal cortex with the whole brain was calculated. The FCs showing significant differences were then subjected to correlation analyses with 17-HAMD scores and NSSI behavior scores. Result: Compared to the healthy control group, the adolescent depression group exhibited decreased FCs in several regions, including the right frontal eye field, left dorsolateral prefrontal cortex, right orbitofrontal cortex, left insula and right anterior cingulate coetex. The 17-HAMD score was positively correlated with the frequency of NSSI behavior within 1 year (rs = 0.461, p = 0.005). The FC between the right anterior cingulate cortex and the right precuneus showed a negative correlation with the 17-HAMD scores (rs = -0.401, p = 0.023). Additionally, the FC between the right orbitofrontal cortex and the right insula, demonstrated a negative correlation with the frequency of NSSI behavior within 1 year (rs = -0.438, p = 0.012, respectively). Conclusion: Adolescents with depression showed decreased FCs of the prefrontal cortex with multiple brain regions, and some of these FCs were associated with the NSSI frequency within 1 year. This study provided neuroimaging evidence for the neurophysiological mechanisms underlying adolescent depression and its comorbidity with NSSI behavior.

16.
J Vis Exp ; (206)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38738868

RESUMEN

Mosquitoes, notorious as the deadliest animals to humans due to their capacity to transmit diseases, pose a persistent challenge to public health. The primary prevention strategy currently in use involves chemical repellents, which often prove ineffective as mosquitoes rapidly develop resistance. Consequently, the invention of new preventive methods is crucial. Such development hinges on a thorough understanding of mosquito biting behaviors, necessitating an experimental setup that accurately replicates actual biting scenarios with controllable testing parameters and quantitative measurements. To bridge this gap, a bio-hybrid atomic force microscopy (AFM) probe was engineered, featuring a biological stinger - specifically, a mosquito labrum - as its tip. This bio-hybrid probe, compatible with standard AFM systems, enables a near-authentic simulation of mosquito penetration behaviors. This method marks a step forward in the quantitative study of biting mechanisms, potentially leading to the creation of effective barriers against vector-borne diseases (VBDs) and opening new avenues in the fight against mosquito-transmitted illnesses.


Asunto(s)
Culicidae , Microscopía de Fuerza Atómica , Animales , Microscopía de Fuerza Atómica/métodos , Culicidae/fisiología , Mordeduras y Picaduras de Insectos/prevención & control
17.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791379

RESUMEN

Manganese (Mn) is a heavy metal that can cause excessive Mn poisoning in plants, disrupting microstructural homeostasis and impairing growth and development. However, the specific response mechanisms of leaves to Mn poisoning have not been fully elucidated. This study revealed that Mn poisoning of soybean plants resulted in yellowing of old leaves. Physiological assessments of these old leaves revealed significant increases in the antioxidant enzymes activities (peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)) and elevated levels of malondialdehyde (MDA), proline, indoleacetic acid (IAA), and salicylic acid (SA), under 100 µM Mn toxicity. Conversely, the levels of abscisic acid (ABA), gibberellin 3 (GA3), and jasmonic acid (JA) significantly decreased. The Mn content in the affected leaves significantly increased, while the levels of Ca, Na, K, and Cu decreased. Transcriptome analysis revealed 2258 differentially expressed genes in the Mn-stressed leaves, 744 of which were upregulated and 1514 were downregulated; these genes included genes associated with ion transporters, hormone synthesis, and various enzymes. Quantitative RT-PCR (qRT-PCR) verification of fifteen genes confirmed altered gene expression in the Mn-stressed leaves. These findings suggest a complex gene regulatory mechanism under Mn toxicity and stress, providing a foundation for further exploration of Mn tolerance-related gene regulatory mechanisms in soybean leaves. Using the methods described above, this study will investigate the molecular mechanism of old soybean leaves' response to Mn poisoning, identify key genes that play regulatory roles in Mn toxicity stress, and lay the groundwork for cultivating high-quality soybean varieties with Mn toxicity tolerance traits.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Manganeso , Hojas de la Planta , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Glycine max/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Manganeso/toxicidad , Manganeso/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Malondialdehído/metabolismo , Perfilación de la Expresión Génica
18.
Eur J Radiol ; 176: 111515, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772163

RESUMEN

OBJECTIVES: To demonstrate the feasibility of better diagnosing young adults with chronic nonspecific low back pain (CNLBP) by measuring water content in paraspinal muscles using water-muscle decomposition technique in dual-energy CT (DECT) and T2-mapping in MRI. METHODS: This prospective cross-sectional study included 110 young individuals (56 with CNLBP at age of 25.7 ± 2.0 years and 54 of asymptomatic at age of 25.1 ± 1.9 years) who underwent both MRI and DECT on the spine. T2 values on T2 mapping in MRI and water density (WD) value on water(muscle) images in DECT were generated at the L1-L4 levels for erector spinae muscle and L2-L5 for multifidus muscle. Pain duration time, Oswestry Disability Index (ODI), Visual Analogue Scale (VAS) were recorded for CNLBP patients. Difference of T2 value and WD between the two patient groups, and correlations between T2 value and WD, and T2 value and WD with clinical indicators were analyzed. RESULTS: Compared with asymptomatic participants, the mean WD of multifidus muscle at L4-L5 and mean T2 values of multifidus muscle at L5 were significantly higher in CNLBP patients (all P < 0.05). T2 values had moderate to strong positive correlations (r = 0.34-0.60, all P < 0.05) with DECT WD in CNLBP patients and healthy volunteers. There was a weak correlation between VAS and WD in L5-level multifidus muscle (r = 0.29, P < 0.05). CONCLUSIONS: The T2 values in MRI and WD in DECT are higher in multifidus muscles of lower vertebra levels for young CNLBP patients, and there exists positive correlation between WD and T2 values, providing useful information for diagnosing CNLBP.


Asunto(s)
Dolor de la Región Lumbar , Imagen por Resonancia Magnética , Músculos Paraespinales , Tomografía Computarizada por Rayos X , Humanos , Masculino , Dolor de la Región Lumbar/diagnóstico por imagen , Femenino , Músculos Paraespinales/diagnóstico por imagen , Adulto , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Estudios Transversales , Tomografía Computarizada por Rayos X/métodos , Adulto Joven , Agua Corporal/diagnóstico por imagen , Dolor Crónico/diagnóstico por imagen , Estudios de Factibilidad
19.
Biophys J ; 123(13): 1804-1814, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38783604

RESUMEN

To realize a low-cost neuromorphic visual system, employing an artificial neuron capable of mimicking the retinal neuron functions is essential. A photoresponsive single transistor neuron composed of a vertical silicon nanowire is proposed. Similar to retinal neurons, various photoresponsive characteristics of the single transistor neuron can be modulated by light intensity as well as wavelength and have a high responsivity to green light like the human eye. The device is designed with a cylindrical surrounding double-gate structure, enclosed by an independently controlled outer gate and inner gate. The outer gate has the function of selectively inhibiting neuron activity, which can mimic lateral inhibition of amacrine cells to ganglion cells, and the inner gate can be utilized for the adjustment of the firing threshold voltage, which can be used to mimic the regulation of photoresponsivity by horizontal cells for adaptive visual perception. Furthermore, a myelination function that controls the speed of information transmission is obtained according to the inherent asymmetric source/drain structure of a vertical silicon nanowire. This work can enable photoresponsive neuronal function using only a single transistor, providing a promising hardware implementation for building miniaturized neuromorphic vision systems at low cost.


Asunto(s)
Nanocables , Silicio , Transistores Electrónicos , Nanocables/química , Silicio/química , Neuronas Retinianas/fisiología , Luz , Humanos
20.
J Econ Entomol ; 117(4): 1406-1417, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38757786

RESUMEN

The ladybug, Cryptolaemus montrouzieri (Mulsant) (Coleoptera: Cocccinellidae)(Mulsant)(Coleoptera: Cocccinellidae), is a highly efficient predator in controlling mealybug populations and is considered an effective agent for controlling the papaya mealybugs (Paracoccus marginatus) (Williams & Granara de Willink) (Hemiptera: Pseudococcidae). Various criteria have been proposed for evaluating predator effectiveness, with the consumption rate of prey by individual predators, specifically the functional response, emerging as a common and crucial metric. This study evaluated the functional responses of third- and fourth-instar larvae, as well as male and female adults (<48 h old) of C. montrouzieri to adult females of P. marginatus at 3 different temperatures (22 °C, 28 °C, and 35 °C) with 70% ±â€…5% RH and a 12L:12D h photoperiod. Prey densities were 2, 4, 8, 16, 32, 45, or 60 papaya mealybugs per predator for all tests. The response to prey density by third- and fourth-instar larvae or both sexes of adult C. montrouzieri was a type II at all temperatures. The highest attack rate and lowest handling time were estimated at 28 °C in males and 35 °C in females, respectively. The highest daily prey consumption rate occurred at 35 °C in both the immature and adult stages of C. montrouzieri. These findings support the potential of C. montrouzieri in controlling the papaya mealybug, especially in tropical and subtropical regions, given its search efficiency at high temperatures tested in this study. However, additional field investigations are needed to ascertain the control efficacy of C. montrouzieri for this mealybug in biocontrol programs.


Asunto(s)
Escarabajos , Hemípteros , Larva , Control Biológico de Vectores , Conducta Predatoria , Temperatura , Animales , Escarabajos/fisiología , Hemípteros/fisiología , Femenino , Masculino , Larva/fisiología , Larva/crecimiento & desarrollo , Cadena Alimentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...