Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(15): 18252-18267, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38581365

RESUMEN

Nitric oxide (NO) intervenes, that is, a potential treatment strategy, and has attracted wide attention in the field of tumor therapy. However, the therapeutic effect of NO is still poor, due to its short half-life and instability. Therapeutic concentration ranges of NO should be delivered to the target tissue sites, cell, and even subcellular organelles and to control NO generation. Mitochondria have been considered a major target in cancer therapy for their essential roles in cancer cell metabolism and apoptosis. In this study, mesoporous silicon-coated gold nanorods encapsulated with a mitochondria targeted and the thermosensitive lipid layer (AuNR@MSN-lipid-DOX) served as the carrier to load NO prodrug (BNN6) to build the near-infrared-triggered synergetic photothermal NO-chemotherapy platform (AuNR@MSN(BNN6)-lipid-DOX). The core of AuNR@MSN exhibited excellent photothermal conversion capability and high loading efficiency in terms of BNN6, reaching a high value of 220 mg/g (w/w), which achieved near-infrared-triggered precise release of NO. The outer biocompatible lipid layer, comprising thermosensitive phospholipid DPPC and mitochondrial-targeted DSPE-PEG2000-DOX, guided the whole nanoparticle to the mitochondria of 4T1 cells observed through confocal microscopy. In the mitochondria, the nanoparticles increased the local temperature over 42 °C under NIR irradiation, and a high NO concentration from BNN6 detected by the NO probe and DSPE-PEG2000-DOX significantly inhibited 4T1 cancer cells in vitro and in vivo under the synergetic photothermal therapy (PTT)-NO therapy-chemotherapy modes. The built NIR-triggered combination therapy nanoplatform can serve as a strategy for multimodal collaboration.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Fosfatidiletanolaminas , Polietilenglicoles , Doxorrubicina/farmacología , Óxido Nítrico , Fototerapia , Nanopartículas/uso terapéutico , Mitocondrias , Lípidos , Línea Celular Tumoral
2.
Fish Physiol Biochem ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568383

RESUMEN

Fish typically adapt to their environment through evolutionary traits, and this adaptive strategy plays a critical role in promoting species diversity. Onychostoma macrolepis is a rare and endangered wild species that exhibits a life history of overwintering in caves and breeding in mountain streams. We analyzed the morphological characteristics, histological structure, and expression of circadian clock genes in O. macrolepis to elucidate its adaptive strategies to environmental changes in this study. The results showed that the relative values of O. macrolepis eye diameter, body height, and caudal peduncle height enlarged significantly during the breeding period. The outer layer of the heart was dense; the ventricular myocardial wall was thickened; the fat was accumulated in the liver cells; the red and white pulp structures of the spleen, renal tubules, and glomeruli were increased; and the goblet cells of the intestine were decreased in the breeding period. In addition, the spermatogenic cyst contained mature sperm, and the ovaries were filled with eggs at various stages of development. Throughout the overwintering period, the melano-macrophage center is located between the spleen and kidney, and the melano-macrophage center in the cytoplasm has the ability to synthesize melanin, and is arranged in clusters to form cell clusters or white pulp scattered in it. Circadian clock genes were identified in all organs, exhibiting significant differences between the before/after overwintering period and the breeding period. These findings indicate that the environment plays an important role in shaping the behavior of O. macrolepis, helping the animals to build self-defense mechanisms during cyclical habitat changes. Studying the morphological, histological structure and circadian clock gene expression of O. macrolepis during the overwintering and breeding periods is beneficial for understanding its unique hibernation behavior in caves. Additionally, it provides an excellent biological sample for investigating the environmental adaptability of atypical cavefish species.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167051, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336103

RESUMEN

Currently, it is acknowledged that gout is caused by uric acid (UA). However, some studies have revealed no correlation between gout and UA levels, and growing evidence suggests that 2,8-dihydroxyadenine (2,8-DHA), whose structural formula is similar to UA but is less soluble, may induce gout. Hence, we hypothesized that uroliths from hyperuricemia (HUA) patients, which is closely associated with gout, may contain 2,8-DHA. In this study, 2,8-DHA in uroliths and serum of HUA patients were determined using HPLC. Moreover, bioinformatics was used to investigate the pathogenic mechanisms of 2,8-DHA nephropathy. Subsequently, a mouse model of 2,8-DHA nephropathy established by the gavage administration of adenine, as well as a model of injured HK-2 cells induced by 2,8-DHA were used to explore the pathogenesis of 2,8-DHA nephropathy. Interestingly, 2,8-DHA could readily deposit in the cortex of the renal tubules, and was found in the majority of these HUA patients. Additionally, the differentially expressed genes between 2,8-DHA nephropathy mice and control mice were found to be involved in inflammatory reactions. Importantly, CCL2 and IL-1ß genes had the maximum degree, closeness, and betweenness centrality scores. The expressions of CCL2 and IL-1ß genes were significantly increased in the serum of 24 HUA patients with uroliths, indicating that they may be significant factors for 2,8-DHA nephropathy. Further analysis illustrated that oxidative damage and inflammation were the crucial processes of 2,8-DHA renal injury, and CCL2 and IL-1ß genes were verified to be essential biomarkers for 2,8-DHA nephropathy. These findings revealed further insights into 2,8-DHA nephropathy, and provided new ideas for its diagnosis and treatment.


Asunto(s)
Adenina/análogos & derivados , Gota , Hiperuricemia , Enfermedades Renales , Humanos , Ratones , Animales , Hiperuricemia/metabolismo , Riñón/metabolismo , Ácido Úrico/metabolismo
4.
Int J Hyg Environ Health ; 257: 114339, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401404

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organic chemicals with potential endocrine-disrupting effects, and have been found to impair the physical growth of offspring in both experimental and epidemiological studies. We aimed to investigate the effects of prenatal PFAS exposure on repeated measurements of multiple anthropometric indicators in infants. METHOD: PFAS were measured in serum samples collected from pregnant women at 12-16 gestational weeks. We calculated z-scores for the weight-for-age (WAZ), weight-for-length (WLZ), head circumference-for-age (HCZ), arm circumference-for-age (ACZ), triceps skinfold-for-age (TSZ), and subscapular skinfold-for-age (SSZ) at birth, 6 months, and 12 months of age according to the child growth standards of the World Health Organization (WHO) for anthropometric indicators. A total of 964 mother-infant pairs were included. A multivariate linear regression was performed to examine the associations between prenatal PFAS concentrations and anthropometric indicators at each time point. A generalized estimating equation (GEE) model was used to examine the longitudinal effects of PFAS exposure on repeated measurements of anthropometric indicators. Ultimately, a Bayesian kernel machine regression (BKMR) model was used to assess the joint effects of the PFAS mixture on anthropometric indicators. RESULTS: In GEE models, perfluorododecanoic acid (PFDoA) in the high tertile group was associated with increased WAZ/WLZ, with ß values (95% confidence intervals (CI)) of 0.12 (0.00, 0.23) and 0.18 (0.03, 0.32), respectively. Perfluorononanoic acid (PFNA) was associated with increased ACZ in the middle and high tertile groups. The BKMR models also presented the associations of the PFAS mixture with increased WAZ/WLZ throughout infancy, with more profound effects in females. Meanwhile, a pattern of inverse associations was observed between the perfluorooctanoic acid (PFOA) concentrations in the high tertile group and decreased WAZ, WLZ, and HCZ in males. In addition, the associations between PFAS and increased TSZ/SSZ at birth were identified by both linear regression and BKMR models. CONCLUSION: Prenatal PFAS exposure (PFNA and PFDoA) was associated with increased infant anthropometry, especially in female infants, while prenatal PFOA exposure was associated with decreased weight, and head and arm circumference in male infants. The findings indicate that prenatal PFAS exposure may impair the growth trajectory of offspring.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Ácidos Grasos , Fluorocarburos , Ácidos Láuricos , Efectos Tardíos de la Exposición Prenatal , Recién Nacido , Lactante , Niño , Humanos , Masculino , Femenino , Embarazo , Estudios Prospectivos , Teorema de Bayes , Antropometría
5.
Org Lett ; 26(7): 1495-1500, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38334317

RESUMEN

Herein, we disclose a radical desulfurative C-C coupling protocol for the synthesis of 4-alkylpyridines. A variety of substituents on both benzyl thiols and 4-cyanopyridines are tolerated. The reaction is carried out under mild and photocatalyst- and transition-metal-free conditions. Preliminary mechanistic studies show that an electron donor-acceptor complex is formed between benzyl thiols and 4-cyanopyridines under alkaline conditions. Then, a variety of 1°, 2°, and 3° C(sp3)-centered radicals was formed by cleavage of the C-S bond, and the 4-alkylpyridines were achieved through a radical-radical coupling with the pyridyl radical anion.

6.
Int J Biol Macromol ; 257(Pt 1): 128434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043655

RESUMEN

Ion conductors offer great potential for diverse electric applications. However, most of the ion conductors were fabricated from non - degradable petroleum-based polymers with non or low biodegradability, which inevitably leads to resource depletion and waste accumulation. Fabricating ion conductors based on renewable, and sustainable materials is highly desirable and valuable. Herein, a series of eutectogels were designed through dual-dynamic-bond cross-linking among ferric iron (Fe3+), protocatechualdehyde (PA), and chitosan (CS) in 1 - allyl-3 - methylimidazole chloride ionic liquid/urea (AmimCl/urea) eutectic-based ionic liquid. Due to the presence of AmimCl/urea eutectic-based ionic liquid, the obtained CS - PA@Fe eutectogels showed excellent ionic conductivity, superior anti-freezing properties that could maintain flexibility and high electrical properties at -20 °C. Dual-dynamic-bond cross-linking of catechol-Fe coordinate and dynamic Schiff base bonds equip CS - PA@Fe eutectogels with excellent injectable, and self-healing abilities. Additionally, due to the presence of phenolic hydroxyl groups of PA, the obtained CS - PA@Fe eutectogels present good adhesiveness. Based on the CS - PA@Fe eutectogels, multifunctional flexible strain sensors with high sensitivity, stability, as well as rapid response speed at wide operating temperature ranges were successfully fabricated. Thus, this study offers a promising strategy for fabricating naturally occurring biopolymers based eutectogels, which show great potential as high-performance flexible strain sensors for next-generation wearable electronic devices.


Asunto(s)
Benzaldehídos , Catecoles , Quitosano , Líquidos Iónicos , Prunella , Esfingosina/análogos & derivados , Adhesivos , Cementos de Resina , Bases de Schiff , Conductividad Eléctrica , Urea , Hidrogeles
7.
Org Lett ; 25(38): 6959-6963, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37726896

RESUMEN

The cross-coupling of epoxides with acyl chlorides or anhydrides by a nickel/titanocene dual catalytic system is established. A variety of synthetically useful ß-hydroxy ketones were obtained in good to high yields by using modified pyridine-oxazoline ligand. The reaction proceeds via the cooperation of titanocene-catalyzed ring-opening of epoxides and nickel-catalyzed acylation of the benzylic radical intermediate.

8.
Front Plant Sci ; 14: 1143745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324724

RESUMEN

Introduction: Fine roots are the critical functional organs of plants to absorb water and nutrients from the soil environment, while the relation between fine root morphological characteristics and yield & quality has received less attention for medicinal plants. Methods: Therefore, we investigated the relationship between fine root morphological characteristics and biomass & gypenosides content. We explored the primary environmental drivers of fine root indicators for Gynostemma longipes from three provenances cultivated at two altitude habitats. Results: At the end of the growing season, compared with the low-altitude habitat, the underground biomass of G. longipes in the high-altitude habitat increased significantly by 200%~290% for all three provenances. The response of gypenosides content to different altitude habitats varied with provenance and plant organs. The biomass of G. longipes strongly depended on the fine root characteristic indicators (P < 0.001), fine root length density, and fine root surface area. Our results also showed that the harvest yield of G. longipes could be effectively increased by promoting the growth of fine roots per unit leaf weight (P < 0.001, R2 = 0.63). Both fine root length density and fine root surface area had strong positive correlations with soil nutrient factors (R2 > 0.55) and a strong negative correlation with soil pH (R2 > 0.48). In a word, the growth of G. longipes is strongly controlled by the fine root morphological characteristics through the response of fine roots to soil nutrient factors and pH. Discussion: Our findings will help to deepen the understanding of the root ecophysiological basis driven by soil factors for the growth and secondary metabolites formation of G. longipes and other medicinal plants under changing habitat conditions. In future research, we should investigate how environmental factors drive plant morphological characteristics (e.g., fine roots) to affect the growth & quality of medicinal plants over a longer time scale.

9.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2405-2416, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37193772

RESUMEN

Hyperuricemia (HUA) is a common chronic metabolic disease that can cause renal failure and even death in severe cases. Berberine (BBR) is an isoquinoline alkaloid derived from Phellodendri Cortex with strong antioxidant, anti-inflammatory, and anti-apoptotic properties. The purpose of this study was to investigate the protective effects of berberine (BBR) against uric acid (UA)-induced HK-2 cells and unravel their regulatory potential mechanisms. The CCK8 assay was carried out to detect cell viability. The expression levels of inflammatory factors interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) and Lactate dehydrogenase (LDH) were measured using Enzyme-linked immunosorbent assays (ELISA). The expression of the apoptosis-related protein (cleaved-Caspase3, cleaved-Caspase9, BAX, BCL-2) was detected by western blot. The effects of BBR on the activities of the NOD-like receptor family pyrin domain containing 3 (NLRP3) and the expression of the downstream genes were determined by RT-PCR and western blot in HK-2 cells. From the data, BBR significantly reversed the up-regulation of inflammatory factors (IL-1ß, IL-18) and LDH. Furthermore, BBR down-regulated protein expression of pro-apoptotic proteins BAX, cleaved caspase3 (cl-Caspase3), cleaved caspase9 (cl-Caspase9), and enhanced the expression of antiapoptotic protein BCL-2. Simultaneously, BBR inhibited the activated NLPR3 and reduced the mRNA levels of NLRP3, Caspase1, IL-18, and IL-1ß. Also, BBR attenuated the expression of NLRP3 pathway-related proteins (NLRP3, ASC, Caspase1, cleaved-Caspase1, IL-18, IL-1ß, and GSDMD). Furthermore, specific NLRP3-siRNA efficiently blocked UA-induced the level of inflammatory factors (IL-1ß, IL-18) and LDH and further inhibited activated NLRP3 pathway. Collectively, our results suggested that BBR can alleviate cell injury induced by UA. The underlying unctionary mechanism may be through the NLRP3 signaling pathway.


Asunto(s)
Berberina , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/farmacología , Ácido Úrico/metabolismo , Inflamasomas/genética , Berberina/farmacología , Proteína X Asociada a bcl-2 , Transducción de Señal
10.
Neural Regen Res ; 18(9): 2067-2074, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36926733

RESUMEN

Opioids, such as morphine, are the most potent drugs used to treat pain. Long-term use results in high tolerance to morphine. High mobility group box-1 (HMGB1) has been shown to participate in neuropathic or inflammatory pain, but its role in morphine tolerance is unclear. In this study, we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days. We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1. HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1ß production by increasing Toll-like receptor 4 receptor expression in microglia, thereby inducing morphine tolerance. Glycyrrhizin, an HMGB1 inhibitor, markedly attenuated chronic morphine tolerance in the mouse model. Finally, compound C (adenosine 5'-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin (heme oxygenase-1 inhibitor) alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1ß production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tolerance, and alleviated morphine tolerance in the mouse model. These findings suggest that morphine induces HMGB1 release via the adenosine 5'-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway, and that inhibiting this signaling pathway can effectively reduce morphine tolerance.

11.
Biomed Pharmacother ; 156: 113941, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36411660

RESUMEN

Coptisine, one of the main active components of Rhizoma Coptidis, possesses anti-inflammatory, antioxidant, anti-apoptosis and renoprotective effects. In this study, we investigated the protective effect of coptisine against hyperuricemia induced renal injury in vitro and in vivo, and determined the underlying mechanism. In the in vivo experiment, a mouse model of hyperuricemia induced acute renal injury was established using potassium oxonate (PO)/ hypoxanthine (HX), and in the in vitro experiment, HK-2 cells injury was induced by uric acid (UA). Results showed that coptisine treatment significantly attenuated the acute renal injury via reducing kidney weight and coefficient, UA, creatinine (CRE), blood urea nitrogen (BUN), and histological damages. Meanwhile, coptisine treatment significantly suppressed hyperuricemia induced oxidant stress, inflammatory injury and apoptosis through promoting superoxide dismutase (SOD) activity, restraining reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor (TNF)-α, interleukin (IL)- 1ß, IL-18 levels, down-regulating protein expressions of cleaved-caspase 3, apoptosis-inducing factor (AIF), cyto-CytC, cleaved poly ADP-ribose polymerase (PARP) and Bcl-2-associated X protein (Bax), and up-regulating protein expressions of Bcl-2 and p-Bad. Additionally, mitochondrial structure damage and ATP depletion in renal tissue and HK-2 cells were observably alleviated. Of note, coptisine treatment remarkably ameliorated hyperuricemia induced phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (PKB/Akt) signaling pathway inhibition. When interference with Akt, the protective effect of coptisine against UA-induced injury in HK2 cells was reversed. All the results suggested that coptisine could protect against hyperuricemia induced renal inflammatory damage, oxidative stress and mitochondrial apoptosis via regulating PI3K/Akt signaling pathway.


Asunto(s)
Lesión Renal Aguda , Hiperuricemia , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasa , Hiperuricemia/complicaciones , Hiperuricemia/tratamiento farmacológico , Ácido Úrico , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Estrés Oxidativo , Inflamación/tratamiento farmacológico
12.
Ecotoxicol Environ Saf ; 245: 114130, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36182800

RESUMEN

BACKGROUND: Perfluoroalkyl substances (PFASs) have been reported to exert reproductive toxicity. Anogenital distance (AGD) is a biomarker of intrauterine androgen exposure and an indicator of genital development. An animal study reported that female neonatal rats exposed to perfluorooctanoic acid or perfluorooctane sulfonate (PFOS) during postnatal days 1-5 exhibited a longer AGD, while epidemiological studies have shown inconsistent results. This study aimed to examine the effects of prenatal exposure to PFASs on the AGD in female neonates. METHODS: PFAS levels were measured in plasma samples obtained from pregnant women at 12-16 gestational weeks using high-performance liquid chromatography/mass spectrometry. The AGD of each female neonate was measured within 3 days after delivery. The anogenital index (AGI), calculated as AGD divided by weight, was also determined. A total of 362 motherinfant pairs were included in this study. A multivariate linear regression model was used to examine the association between prenatal ln-transformed concentrations of PFASs and AGD/AGI. In addition, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) models were used to assess the overall effects of a mixture of PFASs on the AGD/AGI and to identify important contributors to the overall effect. RESULTS: There was a consistent pattern of association between maternal PFAS concentrations and increased AGDanus to posterior fourchette (AF), AGDanus to clitoris (AC), and AGIAF lengths at birth. Statistical significance was found between maternal ln-transformed concentrations of perfluorohexane sulfonate (PFHxS), perfluorododecanoic acid, and perfluorotridecanoic acid and AGDAF, with ß values (95% confidence interval [CI]) of 0.83 (0.16, 1.51), 0.32 (0.05, 0.59), and 0.25 (0.00, 0.51) mm, respectively; between PFOS and AGDAC, with a ß value (95% CI) of 0.63 (0.04, 1.21) mm; and between PFHxS and AGIAF, with a ß value (95% CI) of 0.22 (0.02, 0.43) mm/kg. Similarly, the WQSR and BKMR models showed that an increase in the AGDAF/AGIAF at birth was associated with co-exposure to a mixture of PFASs. CONCLUSION: High maternal concentrations of PFASs were associated with increased AGD in female neonates, indicating that PFASs may impair reproductive development in female offspring in early life.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Efectos Tardíos de la Exposición Prenatal , Ácidos Alcanesulfónicos/toxicidad , Andrógenos , Animales , Teorema de Bayes , Biomarcadores , Contaminantes Ambientales/toxicidad , Femenino , Fluorocarburos/toxicidad , Humanos , Exposición Materna/efectos adversos , Embarazo , Ratas
13.
Biomed Pharmacother ; 153: 113307, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35753262

RESUMEN

Acute lung injury (ALI), hallmarked with alveolar epithelial barrier impairment and pulmonary edema induced by acute inflammation, presents a severe health burden to the public, due to the limited available interventions. Oxyberberine (OBB), having improved anti-inflammatory activity and safety, is a representative component with various activities derived from berberine, whereas its role against ALI with alveolar epithelial barrier injury remains uncertain. To investigate the influence and underlying mechanisms of OBB on ALI, we induced acute inflammation in mice and A549 cells by using lipopolysaccharide (LPS). Changes in alveolar permeability were assessed by analyzing lung histopathology, measuring the dry/wet weight ratio of the lungs, and altering proinflammatory cytokines and neutrophils levels in the bronchoalveolar lavage fluid (BALF). Parameters of pulmonary permeability were assessed through ELISA, western blotting, quantitative real-time PCR, and immunofluorescence analysis. U46619, the agonist of RhoA/ROCK, was employed to further investigate the mechanism of OBB on ALI. Unexpectedly, we found OBB mitigated lung impairment, pulmonary edema, inflammatory reactions in BALF and lung tissue, reduction in ZO-1, and addition of connexin-43. Besides, OBB markedly reduced the expression of RhoA in association with its downstream factors, which are linked to the intercellular junctions and permeability both in vivo and in vitro. Nevertheless, U46619 abolished the benefits obtained from OBB in A549 cells. In conclusion, these outcomes indicated that OBB exerted RhoA/ROCK inhibitor-like effect to moderate alveolar epithelial barrier impairment and permeability, ultimately preventing ALI progression.


Asunto(s)
Lesión Pulmonar Aguda , Edema Pulmonar , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & control , Animales , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón , Ratones , Edema Pulmonar/tratamiento farmacológico , Edema Pulmonar/prevención & control , Transducción de Señal
14.
Fish Physiol Biochem ; 48(3): 481-499, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35595880

RESUMEN

The late overwintering period and breeding period are two important developmental stages of testis in Onychostoma macrolepis. Small non-coding RNAs (sncRNAs) are well-known regulators of biological processes associated with numerous biological processes. This study aimed to elucidate the roles of four sncRNA classes (microRNAs [miRNAs], Piwi-interacting RNAs [piRNAs], tRNA-derived small RNAs [tsRNAs], and rRNA-derived small RNAs [rsRNAs]) across testes in the late overwintering period (in March) and breeding period (in June) by high-throughput sequencing. The testis of O. macrolepis displayed the highest levels of piRNAs and lowest levels of rsRNAs. Compared with miRNAs and tsRNAs in June, tsRNAs in March had a higher abundance, while miRNAs in March had a much lower abundance. Bioinformatics analysis identified 1,362 and 1,340 differentially expressed miRNAs and tsRNAs, respectively. Further analysis showed that miR-200-1, miR-143-1, tRFi-Lys-CTT-1, and tRFi-Glu-CTC-1 could play critical roles during the overwintering and breeding periods. Our findings provided an unprecedented insight to reveal the epigenetic mechanism underlying the overwintering and reproduction process of male O. macrolepis.


Asunto(s)
Cyprinidae , MicroARNs , ARN Pequeño no Traducido , Animales , Cyprinidae/genética , Regulación de la Expresión Génica , Masculino , MicroARNs/genética , ARN Pequeño no Traducido/genética , Reproducción/genética , Testículo
15.
Front Immunol ; 12: 625957, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33767697

RESUMEN

Endotoxin-induced lung injury is one of the major causes of death induced by endotoxemia, however, few effective therapeutic options exist. Hydrogen inhalation has recently been shown to be an effective treatment for inflammatory lung injury, but the underlying mechanism is unknown. In the current study we aim to investigate how hydrogen attenuates endotoxin-induced lung injury and provide reference values for the clinical application of hydrogen. LPS was used to establish an endotoxin-induced lung injury mouse model. The survival rate and pulmonary pathologic changes were evaluated. THP-1 and HUVECC cells were cultured in vitro. The thioredoxin 1 (Trx1) inhibitor was used to evaluate the anti-inflammatory effects of hydrogen. Hydrogen significantly improved the survival rate of mice, reduced pulmonary edema and hemorrhage, infiltration of neutrophils, and IL-6 secretion. Inhalation of hydrogen decreased tissue factor (TF) expression and MMP-9 activity, while Trx1 expression was increased in the lungs and serum of endotoxemia mice. LPS-stimulated THP-1 and HUVEC-C cells in vitro and showed that hydrogen decreases TF expression and MMP-9 activity, which were abolished by the Trx1 inhibitor, PX12. Hydrogen attenuates endotoxin-induced lung injury by decreasing TF expression and MMP-9 activity via activating Trx1. Targeting Trx1 by hydrogen may be a potential treatment for endotoxin-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Antiinflamatorios/farmacología , Hidrógeno/farmacología , Pulmón/efectos de los fármacos , Tiorredoxinas/metabolismo , Tromboplastina/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Interleucina-6/metabolismo , Lipopolisacáridos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos ICR , Infiltración Neutrófila/efectos de los fármacos , Edema Pulmonar/inducido químicamente , Edema Pulmonar/metabolismo , Edema Pulmonar/patología , Edema Pulmonar/prevención & control , Transducción de Señal , Células THP-1
16.
Front Pharmacol ; 12: 744663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975470

RESUMEN

Gastrodin (GAS) is the main bioactive ingredient of Gastrodia, a famous Chinese herbal medicine widely used as an analgesic, but the underlying analgesic mechanism is still unclear. In this study, we first observed the effects of GAS on the vincristine-induced peripheral neuropathic pain by alleviating the mechanical and thermal hyperalgesia. Further studies showed that GAS could inhibit the current density of NaV1.7 and NaV1.8 channels and accelerate the inactivation process of NaV1.7 and NaV1.8 channel, thereby inhibiting the hyperexcitability of neurons. Additionally, GAS could significantly reduce the over-expression of NaV1.7 and NaV1.8 on DRG neurons from vincristine-treated rats according to the analysis of Western blot and immunofluorescence results. Moreover, based on the molecular docking and molecular dynamic simulation, the binding free energies of the constructed systems were calculated, and the binding sites of GAS on the sodium channels (NaV1.7 and NaV1.8) were preliminarily determined. This study has shown that modulation of NaV1.7 and NaV1.8 sodium channels by GAS contributing to the alleviation of vincristine-induced peripheral neuropathic pain, thus expanding the understanding of complex action of GAS as a neuromodulator.

17.
Org Lett ; 22(13): 5020-5024, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32525323

RESUMEN

A novel Ni-catalyzed denitrogenative cross-coupling between benzotriazinones and cyclopropanols is reported herein. This neoteric reactivity allows for the convenient synthesis of ß-(o-amido)aryl ketones from readily available starting materials with good yields (up to 93%) and general substrate scope.

18.
Angew Chem Int Ed Engl ; 59(34): 14404-14408, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32449977

RESUMEN

We present herein an unprecedented allylative dicarbofunctionalization of alkynes with allylic alcohols. This simple catalytic procedure utilizes commercially available Ni(COD)2 , triphenylphosphine, and inexpensive reagents, and delivers valuable skipped dienes and trienes with an all-carbon tetrasubstituted alkene unit in a highly stereoselective fashion. Preliminary mechanistic studies support the reaction pathway of allylnickelation followed by transmetalation in this dicarbofunctionalization of alkynes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA