Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
ArXiv ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38855546

RESUMEN

In the analysis of spatially resolved transcriptomics data, detecting spatially variable genes (SVGs) is crucial. Numerous computational methods exist, but varying SVG definitions and methodologies lead to incomparable results. We review 31 state-of-the-art methods, categorizing SVGs into three types: overall, cell-type-specific, and spatial-domain-marker SVGs. Our review explains the intuitions underlying these methods, summarizes their applications, and categorizes the hypothesis tests they use in the trade-off between generality and specificity for SVG detection. We discuss challenges in SVG detection and propose future directions for improvement. Our review offers insights for method developers and users, advocating for category-specific benchmarking.

2.
Genome Biol ; 25(1): 136, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783325

RESUMEN

In droplet-based single-cell and single-nucleus RNA-seq assays, systematic contamination of ambient RNA molecules biases the quantification of gene expression levels. Existing methods correct the contamination for all genes globally. However, there lacks specific evaluation of correction efficacy for varying contamination levels. Here, we show that DecontX and CellBender under-correct highly contaminating genes, while SoupX and scAR over-correct lowly/non-contaminating genes. Here, we develop scCDC as the first method to detect the contamination-causing genes and only correct expression levels of these genes, some of which are cell-type markers. Compared with existing decontamination methods, scCDC excels in decontaminating highly contaminating genes while avoiding over-correction of other genes.


Asunto(s)
RNA-Seq , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , RNA-Seq/métodos , Humanos , Biología Computacional/métodos , Análisis de Secuencia de ARN/métodos , Núcleo Celular/genética , Programas Informáticos , Animales
3.
Science ; 384(6698): eadh7688, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781356

RESUMEN

RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders; yet, the role of cell type-specific splicing and transcript-isoform diversity during human brain development has not been systematically investigated. In this work, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone and cortical plate regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 distinct isoforms, of which 72.6% were novel (not previously annotated in Gencode version 33), and uncovered a substantial contribution of transcript-isoform diversity-regulated by RNA binding proteins-in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to reprioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders.


Asunto(s)
Trastornos Mentales , Neocórtex , Neurogénesis , Isoformas de Proteínas , Empalme del ARN , Análisis de la Célula Individual , Transcriptoma , Humanos , Empalme Alternativo , Predisposición Genética a la Enfermedad , Trastornos Mentales/genética , Anotación de Secuencia Molecular , Neocórtex/metabolismo , Neocórtex/embriología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neurogénesis/genética
4.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38746115

RESUMEN

Circadian clock genes are emerging targets in many types of cancer, but their mechanistic contributions to tumor progression are still largely unknown. This makes it challenging to stratify patient populations and develop corresponding treatments. In this work, we show that in breast cancer, the disrupted expression of circadian genes has the potential to serve as biomarkers. We also show that the master circadian transcription factors (TFs) BMAL1 and CLOCK are required for the proliferation of metastatic mesenchymal stem-like (mMSL) triple-negative breast cancer (TNBC) cells. Using currently available small molecule modulators, we found that a stabilizer of cryptochrome 2 (CRY2), the direct repressor of BMAL1 and CLOCK transcriptional activity, synergizes with inhibitors of proteasome, which is required for BMAL1 and CLOCK function, to repress a transcriptional program comprising circadian cycling genes in mMSL TNBC cells. Omics analyses on drug-treated cells implied that this repression of transcription is mediated by the transcription factor binding sites (TFBSs) features in the cis-regulatory elements (CRE) of clock-controlled genes. Through a massive parallel reporter assay, we defined a set of CRE features that are potentially repressed by the specific drug combination. The identification of cis -element enrichment may serve as a new way of defining and targeting tumor types through the modulation of cis -regulatory programs, and ultimately provide a new paradigm of therapy design for cancer types with unclear drivers like TNBC.

5.
Cell ; 187(9): 2336-2341.e5, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38582080

RESUMEN

The Genome Aggregation Database (gnomAD), widely recognized as the gold-standard reference map of human genetic variation, has largely overlooked tandem repeat (TR) expansions, despite the fact that TRs constitute ∼6% of our genome and are linked to over 50 human diseases. Here, we introduce the TR-gnomAD (https://wlcb.oit.uci.edu/TRgnomAD), a biobank-scale reference of 0.86 million TRs derived from 338,963 whole-genome sequencing (WGS) samples of diverse ancestries (39.5% non-European samples). TR-gnomAD offers critical insights into ancestry-specific disease prevalence using disparities in TR unit number frequencies among ancestries. Moreover, TR-gnomAD is able to differentiate between common, presumably benign TR expansions, which are prevalent in TR-gnomAD, from those potentially pathogenic TR expansions, which are found more frequently in disease groups than within TR-gnomAD. Together, TR-gnomAD is an invaluable resource for researchers and physicians to interpret TR expansions in individuals with genetic diseases.


Asunto(s)
Genoma Humano , Secuencias Repetidas en Tándem , Humanos , Secuencias Repetidas en Tándem/genética , Secuenciación Completa del Genoma , Bases de Datos Genéticas , Expansión de las Repeticiones de ADN/genética , Estudio de Asociación del Genoma Completo
6.
Nat Commun ; 15(1): 1753, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409103

RESUMEN

Two-dimensional (2D) embedding methods are crucial for single-cell data visualization. Popular methods such as t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) are commonly used for visualizing cell clusters; however, it is well known that t-SNE and UMAP's 2D embeddings might not reliably inform the similarities among cell clusters. Motivated by this challenge, we present a statistical method, scDEED, for detecting dubious cell embeddings output by a 2D-embedding method. By calculating a reliability score for every cell embedding based on the similarity between the cell's 2D-embedding neighbors and pre-embedding neighbors, scDEED identifies the cell embeddings with low reliability scores as dubious and those with high reliability scores as trustworthy. Moreover, by minimizing the number of dubious cell embeddings, scDEED provides intuitive guidance for optimizing the hyperparameters of an embedding method. We show the effectiveness of scDEED on multiple datasets for detecting dubious cell embeddings and optimizing the hyperparameters of t-SNE and UMAP.


Asunto(s)
Algoritmos , Reproducibilidad de los Resultados
7.
Nat Biotechnol ; 42(2): 247-252, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37169966

RESUMEN

We present a statistical simulator, scDesign3, to generate realistic single-cell and spatial omics data, including various cell states, experimental designs and feature modalities, by learning interpretable parameters from real data. Using a unified probabilistic model for single-cell and spatial omics data, scDesign3 infers biologically meaningful parameters; assesses the goodness-of-fit of inferred cell clusters, trajectories and spatial locations; and generates in silico negative and positive controls for benchmarking computational tools.


Asunto(s)
Benchmarking , Modelos Estadísticos , Proyectos de Investigación
8.
bioRxiv ; 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38076922

RESUMEN

Spatially resolved transcriptomics offers unprecedented insight by enabling the profiling of gene expression within the intact spatial context of cells, effectively adding a new and essential dimension to data interpretation. To efficiently detect spatial structure of interest, an essential step in analyzing such data involves identifying spatially variable genes. Despite researchers having developed several computational methods to accomplish this task, the lack of a comprehensive benchmark evaluating their performance remains a considerable gap in the field. Here, we present a systematic evaluation of 14 methods using 60 simulated datasets generated by four different simulation strategies, 12 real-world transcriptomics, and three spatial ATAC-seq datasets. We find that spatialDE2 consistently outperforms the other benchmarked methods, and Moran's I achieves competitive performance in different experimental settings. Moreover, our results reveal that more specialized algorithms are needed to identify spatially variable peaks.

9.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37961332

RESUMEN

Understanding diverse responses of individual cells to the same perturbation is central to many biological and biomedical problems. Current methods, however, do not precisely quantify the strength of perturbation responses and, more importantly, reveal new biological insights from heterogeneity in responses. Here we introduce the perturbation-response score (PS), based on constrained quadratic optimization, to quantify diverse perturbation responses at a single-cell level. Applied to single-cell transcriptomes of large-scale genetic perturbation datasets (e.g., Perturb-seq), PS outperforms existing methods for quantifying partial gene perturbation responses. In addition, PS presents two major advances. First, PS enables large-scale, single-cell-resolution dosage analysis of perturbation, without the need to titrate perturbation strength. By analyzing the dose-response patterns of over 2,000 essential genes in Perturb-seq, we identify two distinct patterns, depending on whether a moderate reduction in their expression induces strong downstream expression alterations. Second, PS identifies intrinsic and extrinsic biological determinants of perturbation responses. We demonstrate the application of PS in contexts such as T cell stimulation, latent HIV-1 expression, and pancreatic cell differentiation. Notably, PS unveiled a previously unrecognized, cell-type-specific role of coiled-coil domain containing 6 (CCDC6) in guiding liver and pancreatic lineage decisions, where CCDC6 knockouts drive the endoderm cell differentiation towards liver lineage, rather than pancreatic lineage. The PS approach provides an innovative method for dose-to-function analysis and will enable new biological discoveries from single-cell perturbation datasets.

10.
J Comput Biol ; 30(11): 1246-1249, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37930802

RESUMEN

The itca Python package offers an information-theoretic criterion to assist practitioners in combining ambiguous outcome labels by balancing the tradeoff between prediction accuracy and classification resolution. This article provides instructions for installing the itca Python package, demonstrates how to evaluate the criterion, and showcases its application in real-world scenarios for guiding the combination of ambiguous outcome labels.

11.
Nat Commun ; 14(1): 7482, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980428

RESUMEN

Benchmarking single-cell RNA-seq (scRNA-seq) and single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) computational tools demands simulators to generate realistic sequencing reads. However, none of the few read simulators aim to mimic real data. To fill this gap, we introduce scReadSim, a single-cell RNA-seq and ATAC-seq read simulator that allows user-specified ground truths and generates synthetic sequencing reads (in a FASTQ or BAM file) by mimicking real data. At both read-sequence and read-count levels, scReadSim mimics real scRNA-seq and scATAC-seq data. Moreover, scReadSim provides ground truths, including unique molecular identifier (UMI) counts for scRNA-seq and open chromatin regions for scATAC-seq. In particular, scReadSim allows users to design cell-type-specific ground-truth open chromatin regions for scATAC-seq data generation. In benchmark applications of scReadSim, we show that UMI-tools achieves the top accuracy in scRNA-seq UMI deduplication, and HMMRATAC and MACS3 achieve the top performance in scATAC-seq peak calling.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Análisis de Expresión Génica de una Sola Célula , Análisis de la Célula Individual , Cromatina/genética
12.
Comput Struct Biotechnol J ; 21: 4079-4095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671239

RESUMEN

Autoencoders are the backbones of many imputation methods that aim to relieve the sparsity issue in single-cell RNA sequencing (scRNA-seq) data. The imputation performance of an autoencoder relies on both the neural network architecture and the hyperparameter choice. So far, literature in the single-cell field lacks a formal discussion on how to design the neural network and choose the hyperparameters. Here, we conducted an empirical study to answer this question. Our study used many real and simulated scRNA-seq datasets to examine the impacts of the neural network architecture, the activation function, and the regularization strategy on imputation accuracy and downstream analyses. Our results show that (i) deeper and narrower autoencoders generally lead to better imputation performance; (ii) the sigmoid and tanh activation functions consistently outperform other commonly used functions including ReLU; (iii) regularization improves the accuracy of imputation and downstream cell clustering and DE gene analyses. Notably, our results differ from common practices in the computer vision field regarding the activation function and the regularization strategy. Overall, our study offers practical guidance on how to optimize the autoencoder design for scRNA-seq data imputation.

13.
bioRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693523

RESUMEN

A central task in expression quantitative trait locus (eQTL) analysis is to identify cis-eGenes (henceforth "eGenes"), i.e., genes whose expression levels are regulated by at least one local genetic variant. Among the existing eGene identification methods, FastQTL is considered the gold standard but is computationally expensive as it requires thousands of permutations for each gene. Alternative methods such as eigenMT and TreeQTL have lower power than FastQTL. In this work, we propose ClipperQTL, which reduces the number of permutations needed from thousands to 20 for data sets with large sample sizes (> 450) by using the contrastive strategy developed in Clipper; for data sets with smaller sample sizes, it uses the same permutation-based approach as FastQTL. We show that ClipperQTL performs as well as FastQTL and runs about 500 times faster if the contrastive strategy is used and 50 times faster if the conventional permutation-based approach is used. The R package ClipperQTL is available at https://github.com/heatherjzhou/ClipperQTL.

14.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546812

RESUMEN

In typical single-cell RNA-seq (scRNA-seq) data analysis, a clustering algorithm is applied to find putative cell types as clusters, and then a statistical differential expression (DE) test is used to identify the differentially expressed (DE) genes between the cell clusters. However, this common procedure uses the same data twice, an issue known as "double dipping": the same data is used to define both cell clusters and DE genes, leading to false-positive DE genes even when the cell clusters are spurious. To overcome this challenge, we propose ClusterDE, a post-clustering DE test for controlling the false discovery rate (FDR) of identified DE genes regardless of clustering quality. The core idea of ClusterDE is to generate real-data-based synthetic null data with only one cluster, as a counterfactual in contrast to the real data, for evaluating the whole procedure of clustering followed by a DE test. Using comprehensive simulation and real data analysis, we show that ClusterDE has not only solid FDR control but also the ability to find cell-type marker genes that are biologically meaningful. ClusterDE is fast, transparent, and adaptive to a wide range of clustering algorithms and DE tests. Besides scRNA-seq data, ClusterDE is generally applicable to post-clustering DE analysis, including single-cell multi-omics data analysis.

15.
Res Sq ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577698

RESUMEN

In typical single-cell RNA-seq (scRNA-seq) data analysis, a clustering algorithm is applied to find putative cell types as clusters, and then a statistical differential expression (DE) test is employed to identify the differentially expressed (DE) genes between the cell clusters. However, this common procedure uses the same data twice, an issue known as "double dipping": the same data is used twice to define cell clusters as potential cell types and DE genes as potential cell-type marker genes, leading to false-positive cell-type marker genes even when the cell clusters are spurious. To overcome this challenge, we propose ClusterDE, a post-clustering DE method for controlling the false discovery rate (FDR) of identified DE genes regardless of clustering quality, which can work as an add-on to popular pipelines such as Seurat. The core idea of ClusterDE is to generate real-data-based synthetic null data containing only one cluster, as contrast to the real data, for evaluating the whole procedure of clustering followed by a DE test. Using comprehensive simulation and real data analysis, we show that ClusterDE has not only solid FDR control but also the ability to identify cell-type marker genes as top DE genes and distinguish them from housekeeping genes. ClusterDE is fast, transparent, and adaptive to a wide range of clustering algorithms and DE tests. Besides scRNA-seq data, ClusterDE is generally applicable to post-clustering DE analysis, including single-cell multi-omics data analysis.

16.
bioRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37163087

RESUMEN

Two-dimensional (2D) embedding methods are crucial for single-cell data visualization. Popular methods such as t-SNE and UMAP are commonly used for visualizing cell clusters; however, it is well known that t-SNE and UMAP's 2D embedding might not reliably inform the similarities among cell clusters. Motivated by this challenge, we developed a statistical method, scDEED, for detecting dubious cell embeddings output by any 2D-embedding method. By calculating a reliability score for every cell embedding, scDEED identifies the cell embeddings with low reliability scores as dubious and those with high reliability scores as trustworthy. Moreover, by minimizing the number of dubious cell embeddings, scDEED provides intuitive guidance for optimizing the hyperparameters of an embedding method. Applied to multiple scRNA-seq datasets, scDEED demonstrates its effectiveness for detecting dubious cell embeddings and optimizing the hyperparameters of t-SNE and UMAP.

17.
J Exp Clin Cancer Res ; 42(1): 113, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143122

RESUMEN

BACKGROUND: Methylation of the p16 promoter resulting in epigenetic gene silencing-known as p16 epimutation-is frequently found in human colorectal cancer and is also common in normal-appearing colonic mucosa of aging individuals. Thus, to improve clinical care of colorectal cancer (CRC) patients, we explored the role of age-related p16 epimutation in intestinal tumorigenesis. METHODS: We established a mouse model that replicates two common genetic and epigenetic events observed in human CRCs: Apc mutation and p16 epimutation. We conducted long-term survival and histological analysis of tumor development and progression. Colonic epithelial cells and tumors were collected from mice and analyzed by RNA sequencing (RNA-seq), quantitative PCR, and flow cytometry. We performed single-cell RNA sequencing (scRNA-seq) to characterize tumor-infiltrating immune cells throughout tumor progression. We tested whether anti-PD-L1 immunotherapy affects overall survival of tumor-bearing mice and whether inhibition of both epigenetic regulation and immune checkpoint is more efficacious. RESULTS: Mice carrying combined Apc mutation and p16 epimutation had significantly shortened survival and increased tumor growth compared to those with Apc mutation only. Intriguingly, colon tumors with p16 epimutation exhibited an activated interferon pathway, increased expression of programmed death-ligand 1 (Pdl1), and enhanced infiltration of immune cells. scRNA-seq further revealed the presence of Foxp3+ Tregs and γδT17 cells, which contribute to an immunosuppressive tumor microenvironment (TME). Furthermore, we showed that a combined therapy using an inhibitor of DNA methylation and a PD-L1 immune checkpoint inhibitor is more effective for improving survival in tumor-bearing mice than blockade of either pathway alone. CONCLUSIONS: Our study demonstrated that age-dependent p16 epimutation creates a permissive microenvironment for malignant transformation of polyps to colon cancer. Our findings provide a mechanistic rationale for future targeted therapy in patients with p16 epimutation.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Animales , Ratones , Epigénesis Genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Neoplasias del Colon/genética , Metilación de ADN , Neoplasias Colorrectales/patología , Microambiente Tumoral/genética , Antígeno B7-H1/genética
19.
Blood Cancer Discov ; 4(3): 228-245, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37067905

RESUMEN

RNA splicing dysregulation underlies the onset and progression of cancers. In chronic lymphocytic leukemia (CLL), spliceosome mutations leading to aberrant splicing occur in ∼20% of patients. However, the mechanism for splicing defects in spliceosome-unmutated CLL cases remains elusive. Through an integrative transcriptomic and proteomic analysis, we discover that proteins involved in RNA splicing are posttranscriptionally upregulated in CLL cells, resulting in splicing dysregulation. The abundance of splicing complexes is an independent risk factor for poor prognosis. Moreover, increased splicing factor expression is highly correlated with the abundance of METTL3, an RNA methyltransferase that deposits N6-methyladenosine (m6A) on mRNA. METTL3 is essential for cell growth in vitro and in vivo and controls splicing factor protein expression in a methyltransferase-dependent manner through m6A modification-mediated ribosome recycling and decoding. Our results uncover METTL3-mediated m6A modification as a novel regulatory axis in driving splicing dysregulation and contributing to aggressive CLL. SIGNIFICANCE: METTL3 controls widespread splicing factor abundance via translational control of m6A-modified mRNA, contributes to RNA splicing dysregulation and disease progression in CLL, and serves as a potential therapeutic target in aggressive CLL. See related commentary by Janin and Esteller, p. 176. This article is highlighted in the In This Issue feature, p. 171.


Asunto(s)
Empalme Alternativo , Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Proteómica , Metiltransferasas/genética , Metiltransferasas/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
bioRxiv ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36993726

RESUMEN

RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders, yet the role of cell-type-specific splicing or transcript-isoform diversity during human brain development has not been systematically investigated. Here, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone (GZ) and cortical plate (CP) regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 unique isoforms, of which 72.6% are novel (unannotated in Gencode-v33), and uncovered a substantial contribution of transcript-isoform diversity, regulated by RNA binding proteins, in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to re-prioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders. One-Sentence Summary: A cell-specific atlas of gene isoform expression helps shape our understanding of brain development and disease. Structured Abstract: INTRODUCTION: The development of the human brain is regulated by precise molecular and genetic mechanisms driving spatio-temporal and cell-type-specific transcript expression programs. Alternative splicing, a major mechanism increasing transcript diversity, is highly prevalent in the human brain, influences many aspects of brain development, and has strong links to neuropsychiatric disorders. Despite this, the cell-type-specific transcript-isoform diversity of the developing human brain has not been systematically investigated.RATIONALE: Understanding splicing patterns and isoform diversity across the developing neocortex has translational relevance and can elucidate genetic risk mechanisms in neurodevelopmental disorders. However, short-read sequencing, the prevalent technology for transcriptome profiling, is not well suited to capturing alternative splicing and isoform diversity. To address this, we employed third-generation long-read sequencing, which enables capture and sequencing of complete individual RNA molecules, to deeply profile the full-length transcriptome of the germinal zone (GZ) and cortical plate (CP) regions of the developing human neocortex at tissue and single-cell resolution.RESULTS: We profiled microdissected GZ and CP regions of post-conception week (PCW) 15-17 human neocortex in bulk and at single-cell resolution across six subjects using high-fidelity long-read sequencing (PacBio IsoSeq). We identified 214,516 unique isoforms, of which 72.6% were novel (unannotated in Gencode), and >7,000 novel exons, expanding the proteome by 92,422 putative proteoforms. We uncovered thousands of isoform switches during cortical neurogenesis predicted to impact RNA regulatory domains or protein structure and implicating previously uncharacterized RNA-binding proteins in cellular identity and neuropsychiatric disease. At the single-cell level, early-stage excitatory neurons exhibited the greatest isoform diversity, and isoform-centric single-cell clustering led to the identification of previously uncharacterized cell states. We systematically assessed the contribution of transcriptomic features, and localized cell and spatio-temporal transcript expression signatures across neuropsychiatric disorders, revealing predominant enrichments in dynamic isoform expression and utilization patterns and that the number and complexity of isoforms per gene is strongly predictive of disease. Leveraging this resource, we re-prioritized thousands of rare de novo risk variants associated with autism spectrum disorders (ASD), intellectual disability (ID), and neurodevelopmental disorders (NDDs), more broadly, to potentially more severe consequences and revealed a larger proportion of cryptic splice variants with the expanded transcriptome annotation provided in this study.CONCLUSION: Our study offers a comprehensive landscape of isoform diversity in the human neocortex during development. This extensive cataloging of novel isoforms and splicing events sheds light on the underlying mechanisms of neurodevelopmental disorders and presents an opportunity to explore rare genetic variants linked to these conditions. The implications of our findings extend beyond fundamental neuroscience, as they provide crucial insights into the molecular basis of developmental brain disorders and pave the way for targeted therapeutic interventions. To facilitate exploration of this dataset we developed an online portal ( https://sciso.gandallab.org/ ).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...