Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39001111

RESUMEN

Space targets move in orbit at a very high speed, so in order to obtain high-quality imaging, high-speed motion compensation (HSMC) and translational motion compensation (TMC) are required. HSMC and TMC are usually adjacent, and the residual error of HSMC will reduce the accuracy of TMC. At the same time, under the condition of low signal-to-noise ratio (SNR), the accuracy of HSMC and TMC will also decrease, which brings challenges to high-quality ISAR imaging. Therefore, this paper proposes a joint ISAR motion compensation algorithm based on entropy minimization under low-SNR conditions. Firstly, the motion of the space target is analyzed, and the echo signal model is obtained. Then, the motion of the space target is modeled as a high-order polynomial, and a parameterized joint compensation model of high-speed motion and translational motion is established. Finally, taking the image entropy after joint motion compensation as the objective function, the red-tailed hawk-Nelder-Mead (RTH-NM) algorithm is used to estimate the target motion parameters, and the joint compensation is carried out. The experimental results of simulation data and real data verify the effectiveness and robustness of the proposed algorithm.

2.
Front Plant Sci ; 15: 1414193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984154

RESUMEN

Trichoderma spp. is known for its ability to enhance plant growth and suppress disease, but the mechanisms for its interaction with host plants and pathogens remain unclear. This study investigated the transcriptomics and metabolomics of peanut plants (Arachis hypogaea L.) inoculated with Trichoderma harzianum QT20045, in the absence and presence of the stem rot pathogen Sclerotium rolfsii JN3011. Under the condition without pathogen stress, the peanut seedlings inoculated with QT20045 showed improved root length and plant weight, increased indole acetic acid (IAA) production, and reduced ethylene level, with more active 1-aminocyclopropane-1-carboxylate acid (ACC) synthase (ACS) and ACC oxidase (ACO), compared with the non-inoculated control. Under the pathogen stress, the biocontrol efficacy of QT20045 against S. rolfsii was 78.51%, with a similar effect on plant growth, and IAA and ethylene metabolisms to the condition with no biotic stress. Transcriptomic analysis of peanut root revealed that Trichoderma inoculation upregulated the expression of certain genes in the IAA family but downregulated the genes in the ACO family (AhACO1 and AhACO) and ACS family (AhACS3 and AhACS1) consistently in the absence and presence of pathogens. During pathogen stress, QT20045 inoculation leads to the downregulation of the genes in the pectinesterase family to keep the host plant's cell wall stable, along with upregulation of the AhSUMM2 gene to activate plant defense responses. In vitro antagonistic test confirmed that QT20045 suppressed S. rolfsii growth through mechanisms of mycelial entanglement, papillary protrusions, and decomposition. Our findings highlight that Trichoderma inoculation is a promising tool for sustainable agriculture, offering multiple benefits from pathogen control to enhanced plant growth and soil health.

3.
J Fungi (Basel) ; 10(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39057372

RESUMEN

Terpenoids are structurally diverse natural products that have been widely used in the pharmaceutical, food, and cosmetic industries. Research has shown that fungi produce a variety of terpenoids, yet fungal terpene synthases remain not thoroughly explored. In this study, the tps1 gene, a crucial component of the terpene synthetic pathway, was isolated from Trichoderma atroviride HB20111 through genome mining. The function of this gene in the terpene synthetic pathway was investigated by constructing tps1-gene-deletion- and overexpression-engineered strains and evaluating the expression differences in the tps1 gene at the transcript level. HS-SPME-GC-MS analysis revealed significant variations in terpene metabolites among wild-type, tps1-deleted (Δtps1), and tps1-overexpressed (Otps1) strains; for instance, most sesquiterpene volatile organic compounds (VOCs) were notably reduced or absent in the Δtps1 strain, while nerolidol, ß-acorenol, and guaiene were particularly produced by the Otps1 strain. However, both the Δtps1 and Otps1 strains produced new terpene metabolites compared to the wild-type, which indicated that the tps1 gene played an important role in terpene synthesis but was not the only gene involved in T. atroviride HB20111. The TPS1 protein encoded by the tps1 gene could function as a sesquiterpene cyclase through biological information and evolutionary tree analysis. Additionally, fungal inhibition assay and wheat growth promotion assay results suggested that the deletion or overexpression of the tps1 gene had a minimal impact on fungal inhibitory activity, plant growth promotion, and development, as well as stress response. This implies that these activities of T. atroviride HB20111 might result from a combination of multiple metabolites rather than being solely dependent on one specific metabolite. This study offers theoretical guidance for future investigations into the mechanism of terpenoid synthesis and serves as a foundation for related studies on terpenoid metabolic pathways in fungi.

4.
Microorganisms ; 12(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39065093

RESUMEN

Strawberry anthracnose caused by Colletotrichum spp. has resulted in significant losses in strawberry production worldwide. Strawberry anthracnose occurs mainly at the seedling and early planting stages, and Colletotrichum siamense is the main pathogen in North China, where mycelia, anamorphic nuclei, and conidia produced in the soil are the main sources of infection. The detection of pathogens in soil is crucial for predicting the prevalence of anthracnose. In this study, a visualized loop-mediated isothermal amplification (LAMP) assay and a loop-mediated isothermal amplification method combined with a TaqMan probe (LAMP-TaqMan) assay were developed for the ß-tubulin sequence of C. siamense. Both methods can detect Colletotrichum siamense genomic DNA at very low concentrations (104 copies/g) in soil, while both the visualized LAMP and LAMP-TaqMan assays exhibited a detection limit of 50 copies/µL, surpassing the sensitivity of conventional PCR and qPCR techniques, and both methods showed high specificity for C. siamense. The two methods were compared: LAMP-TaqMan exhibited enhanced specificity due to the incorporation of fluorescent molecular beacons, while visualized LAMP solely necessitated uncomplicated incubation at a constant temperature, with the results determined by the color change; therefore, the requirements for the instrument are relatively straightforward and user-friendly. In conclusion, both assays will help monitor populations of C. siamense in China and control strawberry anthracnose in the field.

5.
Talanta ; 277: 126332, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823322

RESUMEN

Cardiac troponin I (cTnI) is a critical biomarker for the diagnosis of acute myocardial infarction (AMI). Herein, we report a novel integrated lateral flow immunoassay (LFIA) platform for highly sensitive point-of-care testing (POCT) of cTnI using hierarchical dendritic copper-nickel (HD-nanoCu-Ni) nanostructures. The electrodeposited HD-nanoCu-Ni film (∼22 µm thick) on an ITO-coated glass substrate exhibits superior capillary action and structural integrity. These properties enable efficient sample transport and antibody immobilization, making it a compelling alternative to conventional multi-component paper-based LFIA test strips, which are often plagued by structural fragility and susceptibility to moisture damage. The biofunctionalized HD-nanoCu-Ni substrates were laser-etched with lateral flow channels, including a sample loading/conjugate release zone, a test zone, and a control zone. Numerical simulations were used to further optimize the design of these channels to achieve optimal fluid flow and target capture. The HD-nanoCu-Ni LFIA device utilizes a fluorescence quenching based sandwich immunoassay format using antibody-labeled gold nanoparticles (AuNPs) as quenchers. Two different fluorescent materials, fluorescein isothiocyanate (FITC) and CdSe@ZnS quantum dots (QDs), were used as background fluorophores in the device. Upon the formation of a sandwich immunocomplex with cTnI on the HD-nanoCu-Ni device, introduced AuNPs led to the fluorescence quenching of the background fluorophores. The total assay time was approximately 15 min, demonstrating the rapid and efficient nature of the HD-nanoCu-Ni LFIA platform. For FITC, both inner filter effect (IFE) and fluorescence resonance energy transfer (FRET) contributed to the AuNP-mediated quenching. In the case of CdSe@ZnS QDs, IFE dominated the AuNP-induced quenching. Calibration curves were established based on the relationship between the fluorescence quenching intensity and cTnI concentration in human serum samples, ranging from 0.5 to 128 ng/mL. The limits of detection (LODs) were determined to be 0.27 ng/mL and 0.40 ng/mL for FITC and CdSe@ZnS QDs, respectively. A method comparison study using Passing-Bablok regression analysis on varying cTnI concentrations in human serum samples confirmed the equivalence of the HD-nanoCu-Ni LFIA platform to a commercial fluorescence cTnI LFIA assay kit, with no significant systematic or proportional bias observed.


Asunto(s)
Cobre , Nanoestructuras , Níquel , Troponina I , Troponina I/análisis , Troponina I/sangre , Troponina I/inmunología , Inmunoensayo/métodos , Humanos , Cobre/química , Níquel/química , Nanoestructuras/química , Límite de Detección , Puntos Cuánticos/química , Oro/química , Nanopartículas del Metal/química , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química
6.
Pest Manag Sci ; 80(3): 1039-1052, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37831609

RESUMEN

BACKGROUND: Quorum sensing inhibitors (QSIs) are an emerging control tool that inhibits the quorum sensing (QS) system of pathogenic bacteria. We aimed to screen for potential QSIs in the metabolites of Trichoderma and to explore their inhibitory mechanisms. RESULTS: We screened a strain of Trichoderma asperellum LN004, which demonstrated the ability to inhibit the color development of Chromobacterium subtsugae CV026, primarily attributed to the presence of emodin as its key QSI component. The quantitative polymerase chain reaction with reverse transcription results showed that after emodin treatment of Pectobacterium carotovorum subsp. carotovorum (Pcc), plant cell wall degrading enzyme-related synthetic genes were significantly downregulated, and the exogenous enzyme synthesis gene negative regulator (rsmA) was upregulated 3.5-fold. Docking simulations indicated that emodin could be a potential ligand for ExpI and ExpR proteins because it exhibited stronger competition than the natural ligands in Pcc. In addition, western blotting showed that emodin attenuated the degradation of n-acylhomoserine lactone on the ExpR protein and protected it. Different concentrations of emodin reduced the activity of pectinase, cellulase, and protease in Pcc by 20.81%-72.21%, 8.38%-52.73%, and 3.57%-47.50%. Lesion size in Chinese cabbages, carrots and cherry tomatoes following Pcc infestation was reduced by 10.02%-68.57%, 40.17%-88.56% and 11.36%-86.17%. CONCLUSION: Emodin from T. asperellum LN004 as a QSI can compete to bind both ExpI and ExpR proteins, interfering with the QS of Pcc and reducing the production of virulence factors. The first molecular mechanism reveals the ability of emodin as a QSI to competitively inhibit two QS proteins simultaneously. © 2023 Society of Chemical Industry.


Asunto(s)
Emodina , Pectobacterium , Trichoderma , Emodina/metabolismo , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/metabolismo , Proteínas Bacterianas/genética , Enfermedades de las Plantas/microbiología
7.
J Immunol Methods ; 523: 113574, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37884205

RESUMEN

Serum amyloid A (SAA) is an acute-phase protein produced in response to inflammatory proteins during infections, inflammation, trauma, surgery, cancer, and other conditions. Early and accurate detection of SAA is necessary for diagnosis and monitoring of disease progression. To meet this need, we developed a gradient lateral flow immunoassay test strip using Au nanoparticles as signal reporters. The test strip has three test (T1, T2, and T3) lines with progressively decreasing concentrations of SAA antibody, enabling the determination of high, medium, and low concentrations of SAA in serum. The test strip results were analyzed using three distinct readout methods, each with different sensitivity, accuracy, and precision for SAA concentration measurements. Qualitative judgment is based on the color of the T1 line. Semi-quantitative assessment of SAA concentration is determined by the number of colored T-lines. Specifically, color development in T1 line alone indicates a concentration range of 10-50 µg/mL, while T1 and T2 lines together indicate a range of 50-100 µg/mL, and development in all three lines (T1, T2, and T3) indicates a concentration of >100 µg/mL. Quantitative analysis was performed using either smartphone imaging or image scanning with ImageJ software. By using a five-parameter logistic function, we found a strong correlation (R2 = 0.998) between the ratio of signal intensities of (T1 + T2 + T3) to the control (C) line and SAA concentrations ranging from 5 to 1000 µg/mL. At lower concentrations (0-100 µg/mL), we observed a proportional relationship between the value of (T1 + T2 + T3)/C and SAA concentration. The limit of detection for SAA was 9.33 ng/mL (or 6.53 µg/mL of SAA in undiluted serum samples) for the smartphone method and 3.06 ng/mL (or 2.14 µg/mL of SAA in undiluted serum samples) for the scanner method. The gradient test strip was highly consistent with a commercially available SAA immunochromatographic test strip when tested with real human serum samples. Passing-Bablok regression indicated that results obtained using the smartphone app and scanner methods of the gradient test strip were comparable to those obtained using the commercial test strip. The gradient test strip is flexible and adaptable, providing solutions for qualitative, semi-quantitative, and quantitative SAA measurements.


Asunto(s)
Nanopartículas del Metal , Proteína Amiloide A Sérica , Humanos , Oro , Inmunoensayo/métodos , Anticuerpos Monoclonales
8.
Front Plant Sci ; 14: 1258131, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771481

RESUMEN

As one of the major abiotic stresses, salinity can affect crop growth and plant productivity worldwide. The inoculation of rhizosphere or endophytic microorganisms can enhance plant tolerance to salt stresses, but the potential mechanism is not clear. In this study, Trichoderma harzianum ST02 was applied on sweet sorghum [Sorghum bicolor (L.) Moench] in a field trial to investigate the effects on microbiome community and physiochemical properties in the rhizosphere soil. Compared with the non-inoculated control, Trichoderma inoculation significantly increased the stem yield, plant height, stem diameter, and total sugar content in stem by 35.52%, 32.68%, 32.09%, and 36.82%, respectively. In addition, Trichoderma inoculation improved the nutrient availability (e.g., N, P, and K) and organic matter in the rhizosphere soil and changed the bacterial community structure and function in both bulk and rhizosphere soil by particularly increasing the relative abundance of Actinobacter and N-cycling genes (nifH, archaeal and bacterial amoA). We proposed that T. harzianum ST02 could promote sweet sorghum growth under saline conditions by regulating available nutrients and the bacterial community in the rhizosphere soil.

9.
Plants (Basel) ; 12(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37631203

RESUMEN

The infection of soil-borne diseases has the potential to modify root exudation and the rhizosphere microbiome. However, the extent to which these modifications occur in various monocropping histories remains inadequately explored. This study sampled healthy and diseased American ginseng (Panax quinquefolius L.) plants under 1-4 years of monocropping and analyzed the phenolic acids composition by HPLC, microbiome structure by high-throughput sequencing technique, and the abundance of pathogens by quantitative PCR. First, the fungal pathogens of Fusarium solani and Ilyonectria destructans in the rhizosphere soil were more abundant in the diseased plants than the healthy plants. The healthy American ginseng plants exudated more phenolic acid, especially p-coumaric acid, compared to the diseased plants after 1-2 years of monocropping, while this difference gradually diminished with the increase in monocropping years. The pathogen abundance was influenced by the exudation of phenolic acids, e.g., total phenolic acids (r = -0.455), p-coumaric acid (r = -0.465), and salicylic acid (r = -0.417), and the further in vitro test confirmed that increased concentration of p-coumaric acid inhibited the mycelial growth of the isolated pathogens for root rot. The healthy plants had a higher diversity of rhizosphere bacterial and fungal microbiome than the diseased plants only after a long period of monocropping. Our study has revealed that the cropping history of American ginseng has altered the effect of pathogens infection on rhizosphere microbiota and root exudation.

10.
Anal Chim Acta ; 1269: 341402, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290857

RESUMEN

Immunochromatographic test strips typically consist of sample pad, conjugate pad, nitrocellulose membrane, and absorbent pad. Even minute variations in the assembly of these components can lead to inconsistent sample-reagent interactions, thereby reducing reproducibility. In addition, the nitrocellulose membrane is susceptible to damage during assembly and handling. To address this issue, we propose to replace the sample pad, conjugate pad, and nitrocellulose membrane with hierarchical dendritic gold nanostructure (HD-nanoAu) films to develop a compact integrated immunochromatographic strip. The strip uses quantum dots as a background fluorescence signal and employs fluorescence quenching to detect C-reactive protein (CRP) in human serum. A 5.9 µm thick HD-nanoAu film was electrodeposited on an ITO conductive glass by the constant potential method. The wicking kinetics of the HD-nanoAu film was thoroughly investigated, and the results indicated that the film exhibited favorable wicking properties, with a wicking coefficient of 0.72 µm ms-0.5. The immunochromatographic device was fabricated by etching three interconnected rings on HD-nanoAu/ITO to designate sample/conjugate (S/C), test (T), and control (C) regions. The S/C region was immobilized with mouse anti-human CRP antibody (Ab1) labeled with gold nanoparticles (AuNPs), while the T region was preloaded with polystyrene microspheres decorated with CdSe@ZnS quantum dots (QDs) as background fluorescent material, followed by mouse anti-human CRP antibody (Ab2). The C region was immobilized with goat anti-mouse IgG antibody. After the samples were added to the S/C region, the excellent wicking properties of the HD-nanoAu film facilitated the lateral flow of the CRP-containing sample toward the T and C regions after binding to AuNPs labeled with CRP Ab1. In the T region, CRP-AuNPs-Ab1 formed sandwich immunocomplexes with Ab2, and the fluorescence of QDs was quenched by AuNPs. The ratio of fluorescence intensity in the T region to that in the C region was used to quantify CRP. The T/C fluorescence intensity ratio was negatively correlated with the CRP concentration in the range of 26.67-853.33 ng mL-1 (corresponding to 300-fold diluted human serum), with a correlation coefficient (R2) of 0.98. The limit of detection was 15.0 ng mL-1 (corresponding to 300-fold diluted human serum), and the range of relative standard deviation: 4.48-5.31%, with a recovery rate of 98.22-108.33%. Common interfering substances did not cause significant interference, and the range of relative standard deviation: 1.96-5.51%. This device integrates multiple components of conventional immunochromatographic strips onto a single HD-nanoAu film, resulting in a more compact structure that improves the reproducibility and robustness of detection, making it promising for point-of-care testing applications.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Proteína C-Reactiva/análisis , Reproducibilidad de los Resultados , Colodión , Inmunoensayo/métodos
11.
Int Microbiol ; 26(4): 723-739, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36564574

RESUMEN

Arthrobacter ureafaciens DnL1-1 is a bacterium used for atrazine degradation, while Trichoderma harzianum LTR-2 is a widely used biocontrol fungus. In this study, a liquid co-cultivation of these two organisms was initially tested. The significant changes in the metabolome of fermentation liquors were investigated based on cultivation techniques (single-cultured and co-cultured DnL1-1 and LTR-2) using an UPLC-QTOF-MS in an untargeted metabolomic approach. Principle components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) supervised modelling revealed modifications of the metabolic profiles in fermentation liquors as a function of interactions between different strains. Compared with pure-cultivation of DnL1-1, 51 compounds were altered during the cocultivation, with unique and significant differences in the abundance of organic nitrogen compounds (e.g. carnitine, acylcarnitine 4:0, acylcarnitine 5:0, 3-dehydroxycarnitine and O-acetyl-L-carnitine) and trans-zeatin riboside. Nevertheless, compared with pure-cultivation of LTR-2, the abundance of 157 compounds, including amino acids, soluble sugars, organic acids, indoles and derivatives, nucleosides, and others, changed significantly in the cocultivation. Among them, the concentration of tryptophan, which is a precursor to indoleacetic acid, indoleacetic acid, aspartic acid, and L-glutamic acid increased while that of most soluble sugars decreased upon cocultivation. The fermentation filtrates of co-cultivation of LTR-2 and DnL1-1 showed significant promoting effects on germination and radicle length of wheat. A subsequent experiment demonstrated synergistic effects of differential metabolites caused by co-cultivation of DnL1-1 and LTR-2 on wheat germination. Comprehensive metabolic profiling may provide valuable information on the effects of DnL1-1 and LTR-2 on wheat growth.


Asunto(s)
Trichoderma , Triticum , Técnicas de Cocultivo , Ácidos Indolacéticos/metabolismo , Azúcares , Trichoderma/metabolismo
12.
Front Microbiol ; 14: 1292885, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235437

RESUMEN

Fusarium crown rot (FCR) caused by Fusarium pseudograminearum is a serious threat to wheat production worldwide. This study aimed to assess the effects of Talaromyces muroii strain TM28 isolated from root of Panax quinquefolius against F. pseudograminearum. The strain of TM28 inhibited mycelial growth of F. pseudograminearum by 87.8% at 72 h, its cell free fermentation filtrate had a strong antagonistic effect on mycelial growth and conidial germination of F. pseudograminearum by destroying the integrity of the cell membrane. In the greenhouse, TM28 significantly increased wheat fresh weight and height in the presence of pathogen Fp, it enhanced the antioxidant defense activity and ameliorated the negative effects of F. pseudograminearum, including disease severity and pathogen abundance in the rhizosphere soil, root and stem base of wheat. RNA-seq of F. pseudograminearum under TM28 antagonistic revealed 2,823 differentially expressed genes (DEGs). Most DEGs related to cell wall and cell membrane synthesis were significantly downregulated, the culture filtrate of TM28 affected the pathways of fatty acid synthesis, steroid synthesis, glycolysis, and the citrate acid cycle. T. muroii TM28 appears to have significant potential in controlling wheat Fusarium crown rot caused by F. pseudograminearum.

13.
Sci Rep ; 12(1): 9677, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690652

RESUMEN

Fusarium crown rot and wheat sharp eyespot are major soil-borne diseases of wheat, causing serious losses to wheat yield in China. We applied high-throughput sequencing combined with qPCR to determine the effect of winter wheat seed dressing, with either Trichoderma atroviride HB20111 spore suspension or a chemical fungicide consisting of 6% tebuconazole, on the fungal community composition and absolute content of pathogens Fusarium pseudograminearum and Rhizoctonia cerealis in the rhizosphere at 180 days after planting. The results showed that the Trichoderma and chemical fungicide significantly reduced the amount of F. pseudograminearum in the rhizosphere soil (p < 0.05), and also changed the composition and structure of the fungal community. In addition, field disease investigation and yield measurement showed that T. atroviride HB20111 treatment reduced the whiteheads with an average control effect of 60.1%, 14.9% higher than the chemical treatment; T. atroviride HB20111 increased yield by 7.7%, which was slightly more than the chemical treatment. Therefore, T. atroviride HB20111 was found to have the potential to replace chemical fungicides to control an extended range of soil-borne diseases of wheat and to improve wheat yield.


Asunto(s)
Fungicidas Industriales , Hypocreales , Micobioma , Trichoderma , Vendajes , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rizosfera , Semillas/microbiología , Suelo , Triticum/microbiología
14.
Sci Rep ; 12(1): 8381, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589885

RESUMEN

Burkholderia vietnamiensis B418 is a multifunctional plant growth-promoting rhizobacteria (PGPR) strain with nitrogen-fixing and phosphate-solubilizing capability which can be employed for root-knot nematode (RKN) management on various crops and vegetables. Here we investigated the control efficacy of B. vietnamiensis B418 inoculation against RKN on watermelon, applied either alone or combined with nematicides fosthiazate or avermectin, and their effects on bacterial and fungal microbiomes in rhizosphere soil. The results of field experiments showed individual application of B418 displayed the highest control efficacy against RKN by 71.15%. The combinations with fosthiazate and avermectin exhibited slight incompatibility with lower inhibitory effects of 62.71% and 67.87%, respectively, which were still notably higher than these nematicides applied separately. Analysis of microbiome assemblages revealed B418 inoculation resulted in a slight reduction for bacterial community and a significant increment for fungal community, suggesting that B418 could compete with other bacteria and stimulate fungal diversity in rhizosphere. The relative abundance of Xanthomonadales, Gemmatimonadales and Sphingomonadales increased while that of Actinomycetales reduced with B418 inoculation. The predominate Sordariomycetes of fungal community decreased dramatically in control treatment with B418 inoculation whereas there were increments in fosthiazate and avermectin treatments. Additionally, nitrogen (N) cycling by soil microbes was estimated by quantifying the abundance of microbial functional genes involved in N-transformation processes as B418 has the capability of N-fixation. The copy number of N-fixing gene nifH increased with B418 inoculation, and the highest increment reached 35.66% in control treatment. Our results demonstrate that B. vietnamiensis B418 is an effective biological nematicide for nematode management, which acts through the modulation of rhizosphere microbial community.


Asunto(s)
Burkholderia , Citrullus , Microbiota , Nematodos , Animales , Antinematodos/farmacología , Nitrógeno , Rizosfera , Suelo , Microbiología del Suelo
15.
Sci Rep ; 12(1): 6794, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35473950

RESUMEN

Understanding the influence of bearing component roundness errors and roller number on the rotational accuracy of rolling bearings is crucial in the design of high precision bearings. The rotational accuracy of an assembled bearing is dependent upon roller number and roundness errors of the bearing components. We propose a model for calculating the rotational accuracy of a cylindrical roller bearing; we experimentally verified the effectiveness of the model in predicting the radial run-out of the inner ring proposed in the previous paper in this series. We sought to define the key contributing factors to the rotational accuracy by studying both the influence of the coupling effect of the roller number and the influence of the roundness errors in the inner raceway, outer raceway, and rollers on the motion error. The model and results will help engineers choose reasonable manufacturing tolerances for bearing components to achieve the required rotational accuracy.

16.
Bioorg Med Chem ; 59: 116676, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35220163

RESUMEN

We report herein the design, synthesis, and structure-activity relationship studies of pleuromutilin derivatives containing urea/thiourea functionalities. The antibacterial activities of these new pleuromutilin derivatives were evaluated in vitro against Gram-positive pathogens (GPPs) (Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium) and Mycoplasma pneumoniae by the broth dilution method. Most of the targeted compounds exhibit good potency in inhibiting the growth of pathogens including Methicillin-susceptible S. aureus (MSSA, ATCC29213, MIC: 0.0625-16 µg/mL), Methicillin-resistant S. aureus (MRSA, ATCC43300, MIC: 0.125-16 µg/mL) and M. pneumoniae (ATCC15531 MIC: 0.125-1 µg/mL, ATCC29342 MIC: 0.0625-0.25 µg/mL and drug resistant strain MIC: 0.5-2 µg/mL). In particular, the compounds 6m and 6n containing phenyl-urea group showed excellent activity with the MIC value less than 0.0625 µg/mL against S. aureus ATCC29213. The compound 6h exhibited better activity than tiamulin against Methicillin-resistant S. aureus ATCC43300.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Antibacterianos/farmacología , Diterpenos , Pruebas de Sensibilidad Microbiana , Compuestos Policíclicos , Urea , Pleuromutilinas
17.
J Plant Res ; 135(1): 93-104, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34727276

RESUMEN

Peppermint (Mentha piperita L.) is an important medicinal aromatic plant. In this study, the morphology, physiology, biochemistry and gene expression of chromosomes doubling peppermint (D1 lines) were analyzed. The analysis showed that D1 lines had larger, thicker and darker leaves, and stronger roots when planted in the pots, but delayed growth in the field condition. Under NaCl stress, the D1 lines increased cell oxidative defense through more active antioxidant enzymes and decreased the oxidative damages of cell membrane, leading to a significantly greater survival rate and photosynthesis intensity than WT lines. The size and density of glandular trichomes of D1 lines was larger, which contributed to its higher essential oil yield. In addition, chromosome doubling reduced the inhibition of NaCl stress on essential oil yield and quality, through changing the expression of genes in the oil biosynthesis pathway. The traits of chromosome doubling peppermint provide new technical and theoretical evidence for peppermint germplasm improvement.


Asunto(s)
Mentha piperita , Aceites Volátiles , Cromosomas , Mentha piperita/genética , Hojas de la Planta/genética , Estrés Salino
18.
Crit Rev Food Sci Nutr ; 62(4): 861-870, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33034197

RESUMEN

Citrus (Citrus spp.) species produce a variety of fruits that are popular worldwide. Citrus fruits, however, are susceptible to postharvest decays caused by various pathogenic fungi, including Penicillium digitatum, Penicillium italicum, Geotrichum citri-aurantii, Aspergillus niger, and Aspergillus flavus. Decays resulting from infections by these pathogens cause a significant reduction in citrus quality and marketable yield. Biological control of postharvest decay utilizing antagonistic bacteria and fungi has been explored as a promising alternative to synthetic fungicides. In the present article, the isolation of antagonists utilized to manage postharvest decays in citrus is reviewed, and the mechanism of action including recent molecular and genomic studies is discussed as well. Several recently-postulated mechanisms of action, such as biofilm formation and an oxidative burst of reactive oxygen species have been highlighted. Improvements in biocontrol efficacy of antagonists through the use of a combination of microbial antagonists and additives are also reviewed. Biological control utilizing bacterial and yeast antagonists is a critical component of an integrated management approach for the sustainable development of the citrus industry. Further research will be needed, however, to explore and utilize beneficial microbial consortia and novel approaches like CRISPR/Cas technology for management of postharvest decays.


Asunto(s)
Citrus , Fungicidas Industriales , Frutas , Hongos , Enfermedades de las Plantas/prevención & control
19.
Biotechnol Bioprocess Eng ; 26(1): 25-38, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584104

RESUMEN

Viral nanoparticles (VNPs) comprise a variety of mammalian viruses, plant viruses, and bacteriophages, that have been adopted as building blocks and supra-molecular templates in nanotechnology. VNPs demonstrate the dynamic, monodisperse, polyvalent, and symmetrical architectures which represent examples of such biological templates. These programmable scaffolds have been exploited for genetic and chemical manipulation for displaying of targeted moieties together with encapsulation of various payloads for diagnosis or therapeutic intervention. The drug delivery system based on VNPs offer diverse advantages over synthetic nanoparticles, including biocompatibility, biodegradability, water solubility, and high uptake capability. Here we summarize the recent progress of VNPs especially as targeted anticancer vehicles from the encapsulation and surface modification mechanisms, involved viruses and VNPs, to their application potentials.

20.
Microorganisms ; 8(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138329

RESUMEN

Soil nitrification (microbial oxidation of ammonium to nitrate) can lead to nitrogen leaching and environmental pollution. A number of plant species are able to suppress soil nitrifiers by exuding inhibitors from roots, a process called biological nitrification inhibition (BNI). However, the BNI activity of perennial grasses in the nutrient-poor soils of Australia and the effects of BNI activity on nitrifying microbes in the rhizosphere microbiome have not been well studied. Here we evaluated the BNI capacity of bermudagrass (Cynodon dactylon L.), St. Augustinegrass (Stenotaphrum secundatum (Walt.) Kuntze), saltwater couch (Sporobolus virginicus), seashore paspalum (Paspalum vaginatum Swartz.), and kikuyu grass (Pennisetum clandestinum) compared with the known positive control, koronivia grass (Brachiaria humidicola). The microbial communities were analysed by sequencing 16S rRNA genes. St. Augustinegrass and bermudagrass showed high BNI activity, about 80 to 90% of koronivia grass. All the three grasses with stronger BNI capacities suppressed the populations of Nitrospira in the rhizosphere, a bacteria genus with a nitrite-oxidizing function, but not all of the potential ammonia-oxidizing archaea. The rhizosphere of saltwater couch and seashore paspalum exerted a weak recruitment effect on the soil microbiome. Our results demonstrate that BNI activity of perennial grasses played a vital role in modulating nitrification-associated microbial populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...