RESUMEN
Non-POU domain-containing octamer-binding protein (NONO) is a multi-functional nuclear protein which belongs to the Drosophila behavior/human splicing (DBHS) protein family. NONO is known to regulate multiple important biological processes including host antiviral immune response. However, whether NONO can inhibit porcine reproductive and respiratory syndrome virus (PRRSV) replication is less well understood. In this study, we demonstrated that swine NONO (sNONO) inhibited PRRSV replication, via increasing expression of IFN-ß, whereas NONO knockdown or knockout in PAM-KNU cells was more susceptible to PRRSV infection. As an IRF3 positive regulation factor, NONO promoted IFN-ß expression by enhancing activation of IRF3. During PRRSV infection, NONO further up-regulated IRF3-mediated IFN-ß expression by interacting with PRRSV N protein. Mechanistically, NONO functioned as a scaffold protein to detect PRRSV N protein and formed N-NONO-IRF3 complex in the nucleus. Interestingly, it was found that the NONO protein reversed the inhibitory effect of PRRSV N protein on type I IFN signaling pathway. Taken together, our study provides a novel mechanism for NONO to increase the IRF3-mediated IFN-ß activation by interacting with the viral N protein to inhibit PRRSV infection.
Asunto(s)
Factor 3 Regulador del Interferón , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Replicación Viral , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Factor 3 Regulador del Interferón/metabolismo , Porcinos , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Humanos , Interferón beta/metabolismo , Interferón beta/inmunología , Transducción de Señal , Proteínas de la Nucleocápside/inmunología , Proteínas de la Nucleocápside/metabolismo , Células HEK293 , Línea Celular , Inmunidad InnataRESUMEN
Background: In recent years, the number of HIV/AIDS cases among youth has increased year by year around the world. A spatial and temporal analysis of these AIDS cases is necessary for the development of youth AIDS prevention and control policies. Objective: This study aimed to analyze the spatial and temporal distribution and associated factors of HIV/AIDS among youth in Guangxi as an example. Methods: The reported HIV/AIDS cases of youths aged 15-24 years in Guangxi from January 2014 to December 2021 were extracted from the Chinese Comprehensive Response Information Management System of HIV/AIDS. Data on population, economy, and health resources were obtained from the Guangxi Statistical Yearbook. The ArcGIS (version 10.8; ESRI Inc) software was used to describe the spatial distribution of AIDS incidence among youths in Guangxi. A Bayesian spatiotemporal model was used to analyze the distribution and associated factors of HIV/AIDS, such as gross domestic product per capita, population density, number of health technicians, and road mileage per unit area. Results: From 2014 to 2021, a total of 4638 cases of HIV/AIDS infection among youths were reported in Guangxi. The reported incidence of HIV/AIDS cases among youths in Guangxi increased from 9.13/100,000 in 2014 to 11.15/100,000 in 2019 and then plummeted to a low of 8.37/100,000 in 2020, followed by a small increase to 9.66/100,000 in 2021. The districts (counties) with relatively high HIV/AIDS prevalence among youths were Xixiangtang, Xingning, Qingxiu, Chengzhong, and Diecai. The reported incidence of HIV/AIDS among youths was negatively significantly associated with road mileage per unit area (km) at a posterior mean of -0.510 (95% CI -0.818 to 0.209). It was positively associated with population density (100 persons) at a posterior mean of 0.025 (95% CI 0.012-0.038), with the number of health technicians (100 persons) having a posterior mean of 0.007 (95% CI 0.004-0.009). Conclusions: In Guangxi, current HIV and AIDS prevention and control among young people should focus on areas with a high risk of disease. It is suggested to strengthen the allocation of AIDS health resources and balance urban development and AIDS prevention. In addition, AIDS awareness, detection, and intervention among Guangxi youths need to be strengthened.
Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Teorema de Bayes , Infecciones por VIH , Análisis Espacio-Temporal , Humanos , China/epidemiología , Adolescente , Masculino , Femenino , Adulto Joven , Síndrome de Inmunodeficiencia Adquirida/epidemiología , Infecciones por VIH/epidemiología , Incidencia , Factores de RiesgoRESUMEN
TAK1-binding protein 1 (TAB1) assembles with TAK1 through its C-terminal domain, leading to the self-phosphorylation and activation of TAK1, which plays an important role in the activation of NF-κB and MAPK signaling pathway. Pseudorabies virus (PRV) is the pathogen of Pseudorabies (PR), which belongs to the Alphaherpesvirus subfamily and causes serious economic losses to the global pig industry. However, the impact of swine TAB1 (sTAB1) on PRV infection has not been reported. In this study, evidence from virus DNA copies, virus titer and western blotting confirmed that sTAB1 could inhibit PRV replication and knockout of sTAB1 by CRISPR-Cas9 gene editing system could promote PRV replication. Further mechanistic studies by real-time PCR and luciferase reporter gene assay demonstrated that sTAB1 could enhance the production of inflammatory factors and chemokines, IFN-ß transcription level and IFN-ß promoter activity after PRV infection. In summary, we clarify the underlying mechanism of sTAB1 in inhibiting PRV replication for the first time, which provides a new idea for preventing PRV infection and lays a foundation for PRV vaccine development.
Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Replicación Viral , Animales , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/fisiología , Porcinos , Seudorrabia/virología , Enfermedades de los Porcinos/virología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular , Sistemas CRISPR-Cas , Interferón beta/genética , Interferón beta/metabolismoRESUMEN
Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant disease caused by porcine reproductive and respiratory syndrome virus (PRRSV). Type I interferon (IFN) induces a large number of interferon-stimulated genes (ISGs) expression to inhibit PRRSV infection. To survive in the host, PRRSV has evolved multiple strategies to antagonize host innate immune response. Previous studies have reported that PRRSV N protein decreases the expression of TRIM25 and TRIM25-mediated RIG-I ubiquitination to suppress IFN-ß production. However, whether other PRRSV proteins inhibit the antiviral function of TRIM25 is less well understood. In this study, we first found that PRRSV NSP1α decreased ISGylation of TRIM25. Meanwhile, NSP1α significantly suppressed TRIM25-mediated IFN-ß production to promote PRRSV replication. Further studies demonstrated that PRRSV NSP1α reduced the protein level of TRIM25 in proteasome system but did not regulate the transcription level of TRIM25. In addition, the function of NSP1α in TRIM25 degradation did not rely on its papain-like cysteine protease activity. Taken together, PRRSV NSP1α antagonizes the antiviral response of TRIM25 by mediating TRIM25 degradation to promote PRRSV replication. Our data identify TRIM25 as a natural target of PRRSV NSP1α and reveal a novel mechanism that PRRSV induces TRIM25 degradation and inhibits host antiviral immune response.
Asunto(s)
Inmunidad Innata , Virus del Síndrome Respiratorio y Reproductivo Porcino , Complejo de la Endopetidasa Proteasomal , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Proteínas no Estructurales Virales , Replicación Viral , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Porcinos , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Interferón beta/genética , Interferón beta/metabolismo , Interferón beta/inmunología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular , Ubiquitinación , Humanos , Células HEK293 , Interacciones Huésped-Patógeno/inmunologíaRESUMEN
Vertically stacked all-organic active-matrix organic light-emitting diodes are promising candidates for high-quality skin-like displays due to their high aperture ratio, extreme mechanical flexibility, and low-temperature processing ability. However, these displays suffer from process interferences when interconnecting functional layers made of all-organic materials. To overcome this challenge, we present an innovative integration strategy called "discrete preparation-multilayer lamination" based on microelectronic processes. In this strategy, each functional layer was prepared separately on different substrates to avoid chemical and physical damage caused by process interferences. A single interconnect layer was introduced between each vertically stacked functional layer to ensure mechanical compatibility and interconnection. Compared to the previously reported layer-by-layer preparation method, the proposed method eliminates the need for tedious protection via barrier and pixel-defining layer processing steps. Additionally, based on active-matrix display, this strategy allows multiple pixels to collectively display a pattern of "1" with an aperture ratio of 83%. Moreover, the average mobility of full-photolithographic organic thin-film transistors was 1.04 cm2 V-1 s-1, ensuring stable and uniform displays. This strategy forms the basis for the construction of vertically stacked active-matrix displays, which should facilitate the commercial development of skin-like displays in wearable electronics.
RESUMEN
BACKGROUND: Polycystic ovary syndrome (PCOS) is a common and complex endocrine disease in women, with a prevalence of 5% to 18% worldwide. HeQi San (HQS) is a Chinese medicine compound prescription, which has been applied to treat various endocrine and metabolic diseases. OBJECTIVE: The study was intended to investigate the effect of HQS on PCOS, and clarify the potential mechanism via in vivo and in vitro experiments. METHODS: The PCOS mouse model was established by injecting the dehydroepiandrosterone (DHEA) subcutaneously and fading high-fat diet for 3 weeks. After making model, PCOS mice were treated with HQS (8.75 g/kg and 17.5 g/kg, ig.) for 4 weeks. Firstly, we assessed the histopathological changes in ovary tissues and detected the hormone level. Subsequently, the study evaluated the capability of anti-inflammatory and regulating macrophage polarization of HQS in vivo and in vitro. The secretion of inflammation indicators was measured with Elisa kits, and the expression level of phosphorylated nuclear factor kappa-B (P-NFκB) and B-lymphocyte activation antigen B7 (CD80) was measured by immunofluorescence and Western blot. Meanwhile, the apoptosis of ovarian granulosa cells was detected via tunel staining and Western blot. The co-culture model in vitro was utilized to assess the effect between macrophage polarization and human ovarian granulosa cells (KGN cells) apoptosis. Furthermore, 16S rDNA sequencing was utilized to elevate gut microbiota change in PCOS mice. RESULTS: HQS reversed the abnormal hormone increase, ameliorated insulin resistance, and improved histopathological changes of the ovary tissue to exert the therapeutic effect. HQS inhibited the expression of P-NF-κB and decreased the production of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) to further prohibit the macrophage M1 polarization in ovary tissues and macrophages. The apoptosis-positive cells, Bcl-2 Assaciated X protein (BAX), and cleaved-caspase 3 expression were also decreased in the treatment group. The B-cell lymphoma-2 (Bcl2) expression was enhanced after HQS treatment in vivo. The co-culture experiments also verified that HQS could prevent the apoptosis of KGN cells. Furthermore, HQS mediated the abundance of gut flora. The abundance of bifldobacterium and parasutterella was increased and the abundance of lachnoclostridium was decreased. CONCLUSION: The study verified that HQS has the effect of anti-inflammation and inhibits macrophage M1 polarization. Besides, HQS could mediate the abundance of gut microbiota in mice with PCOS. Thus, this study would provide more reasonable basis of HQS for clinical use. In conclusion, HQS might be a potential candidate for PCOS treatment.
Asunto(s)
Antiinflamatorios , Deshidroepiandrosterona , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Síndrome del Ovario Poliquístico , Animales , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/inmunología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ovario/patología , Ovario/efectos de los fármacos , Ovario/inmunología , Ovario/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Células RAW 264.7 , Citocinas/metabolismo , Apoptosis/efectos de los fármacos , FN-kappa B/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/tratamiento farmacológico , Ratones Endogámicos C57BLRESUMEN
Porcine Mx1 is a type of interferon-induced GTPase that inhibits the replication of certain RNA viruses. However, the antiviral effects and the underlying mechanism of porcine Mx1 for porcine reproductive and respiratory syndrome virus (PRRSV) remain unknown. In this study, we demonstrated that porcine Mx1 could significantly inhibit PRRSV replication in MARC-145 cells. By Mx1 segment analysis, it was indicated that the GTPase domain (68-341aa) was the functional area to inhibit PRRSV replication and that Mx1 interacted with the PRRSV-N protein through the GTPase domain (68-341aa) in the cytoplasm. Amino acid residues K295 and K299 in the G domain of Mx1 were the key sites for Mx1-N interaction while mutant proteins Mx1(K295A) and Mx1(K299A) still partially inhibited PRRSV replication. Furthermore, we found that the GTPase activity of Mx1 was dominant for Mx1 to inhibit PRRSV replication but was not essential for Mx1-N interaction. Finally, mechanistic studies demonstrated that the GTPase activity of Mx1 played a dominant role in inhibiting the N-Nsp9 interaction and that the interaction between Mx1 and N partially inhibited the N-Nsp9 interaction. We propose that the complete anti-PRRSV mechanism of porcine Mx1 contains a two-step process: Mx1 binds to the PRRSV-N protein and subsequently disrupts the N-Nsp9 interaction by a process requiring the GTPase activity of Mx1. Taken together, the results of our experiments describe for the first time a novel mechanism by which porcine Mx1 evolves to inhibit PRRSV replication. IMPORTANCE: Mx1 protein is a key mediator of the interferon-induced antiviral response against a wide range of viruses. How porcine Mx1 affects the replication of porcine reproductive and respiratory syndrome virus (PRRSV) and its biological function has not been studied. Here, we show that Mx1 protein inhibits PRRSV replication by interfering with N-Nsp9 interaction. Furthermore, the GTPase activity of porcine Mx1 plays a dominant role and the Mx1-N interaction plays an assistant role in this interference process. This study uncovers a novel mechanism evolved by porcine Mx1 to exert anti-PRRSV activities.
Asunto(s)
Proteínas de Resistencia a Mixovirus , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Proteínas no Estructurales Virales , Replicación Viral , Animales , Línea Celular , Interferones/inmunología , Interferones/metabolismo , Mutación , Proteínas de Resistencia a Mixovirus/química , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Resistencia a Mixovirus/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/enzimología , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/crecimiento & desarrollo , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Unión Proteica , Porcinos/virología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismoRESUMEN
Traditional Chinese medicine has been utilized in China for approximately thousands of years in clinical settings to prevent Alzheimer's disease (AD) and enhance memory, despite the lack of a systematic exploration of its biological underpinnings. Exciting research has corroborated the beneficial effects of tetrahydroxy stilbene glycoside (TSG), an extract derived from Polygonum multiflorum, in delaying learning and memory impairment in a model that mimics AD. Therefore, the primary objective of this study is to investigate the major function of TSG upon protein regulation in AD. Herein, a novel approach, encompassing data independent acquisition (DIA), DIA phosphorylated proteomics, and parallel reaction monitoring (PRM), was utilized to integrate quantitative proteomic data collected from APP/PS1 mouse model exhibiting toxic intracellular aggregation of Aß. Initially, we deliberated upon both single and multi-dimensional data pertaining to AD model mice. Furthermore, we authenticated disparities in protein phosphorylation quantity and expression, phosphorylation function, and ultimately phosphorylation kinase analysis. In order to validate the results, we utilized PRM ion monitoring technology to identify potential protein or peptide biomarkers. In the mixed samples, targeted detection of 50 target proteins revealed that 26 to 33 target proteins were stably detected by PRM. In summary, our findings provide new candidates for AD biomarker, which have been identified and validated through protein researches conducted on mouse brains. This offers a wealth of potential resources for extensive biomarker validation in neurodegenerative diseases. SIGNIFICANCE: DIA phosphorylated proteomics technique was used to detect and analyze phosphorylated proteins in brain tissues of mice with AD. Data were analyzed by various bioinformatics tools to explore the phosphorylation events and characterize them related to TSG. The results of DIA were further verified by PRM. Besides, we mapped the major metabolite classes emerging from the analyses to key biological pathways implicated in AD to understand the potential roles of the molecules and the interactions in triggering symptom onset and progression of AD. Meanwhile, we clarified that in the context of AD onset and TSG intervention, the changes in proteins, protein phosphorylation, phosphorylation kinases, and the internal connections.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Proteómica , Precursor de Proteína beta-Amiloide , Glicósidos , Biomarcadores , Ratones Transgénicos , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismoRESUMEN
OBJECTIVE: Exploring the correlation between bone turnover marks (BTMs) with lumbar BMD in middle-aged populations. METHODS: The cross-sectional analysis fetched data came from NHANES. The level of serum bone alkaline phosphatase (sBAP) and urinary N-telopeptide (uNTx) were regarded as representative of bone turnover. Lumbar BMD was the outcome of the study. Multivariable linear regression models were utilized to detect the correlation of sBAP and uNTx with Lumbar BMD. RESULTS: The level of sBAP and uNTx was negatively correlated with lumbar BMD in every multivariable linear regression. For sBAP, this inverse correlation was stable in both men and women (P < 0.01). uNTx indicated a negative association after all relevant covariables were adjusted (P < 0.01). The men group remained the negative correlation in gender subgroup analysis (P < 0.01). CONCLUSION: This study indicated that the increased level of sBAP and uNTx associated with lumbar BMD decreased among middle-aged adults. This correlation could prompt researchers to explore further the relationship between bone turnover rate and BMD, which may provide information for the early detection of BMD loss and provide a new strategy for clinical practice.
Asunto(s)
Fosfatasa Alcalina , Densidad Ósea , Adulto , Masculino , Persona de Mediana Edad , Femenino , Humanos , Estudios Transversales , Encuestas Nutricionales , Remodelación ÓseaRESUMEN
Intrinsically stretchable gas sensors possess outstanding advantages in seamless conformability and high-comfort wearability for real-time detection toward skin/respiration gases, making them promising candidates for health monitoring and non-invasive disease diagnosis and therapy. However, the strain-induced deformation of the sensitive semiconductor layers possibly causes the sensing signal drift, resulting in failure in achievement of the reliable gas detection. Herein, a surprising result that the stretchable organic polymers present a universal strain-insensitive gas sensing property is shown. All the stretchable polymers with different degrees of crystallinity, including indacenodithiophene-benzothiadiazole (PIDTBT), diketo-pyrrolo-pyrrole bithiophene thienothiophene (DPPT-TT) and poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiad-iazolo [3,4-c] pyridine] (PCDTPT), show almost unchanged gas response signals in the different stretching states. This outstanding advantage enables the intrinsically stretchable devices to imperceptibly adhere on human skin and well conform to the versatile deformations such as bending, twisting, and stretching, with the highly strain-stable gas sensing property. The intrinsically stretchable PIDTBT sensor also demonstrates the excellent selectivity toward the skin-emitted trimethylamine (TMA) gas, with a theoretical limit of detection as low as 0.3 ppb. The work provides new insights into the preparation of the reliable skin-like gas sensors and highlights the potential applications in the real-time detection of skin gas and respiration gas for non-invasive medical treatment and disease diagnosis.
Asunto(s)
Semiconductores , Piel , Humanos , Polímeros , Dispositivos Electrónicos VestiblesRESUMEN
Objective: We explore the candidate susceptibility genes for influenza A virus (IAV), measles, rubella, and mumps and their underlying biological mechanisms. Methods: We downloaded the genome-wide association study summary data of four virus-specific immunoglobulin G (IgG) level data sets (anti-IAV IgG, anti-measles IgG, anti-rubella IgG, and anti-mumps virus IgG levels) and integrated them with reference models of three potential tissues from the Genotype-Tissue Expression (GTEx) project, namely, whole blood, lung, and transformed fibroblast cells, to identify genes whose expression is predicted to be associated with IAV, measles, mumps, and rubella. Results: We identified 19 significant genes (ULK4, AC010132.11, SURF1, NIPAL2, TRAP1, TAF1C, AC000078.5, RP4-639F20.1, RMDN2, ATP1B3, SRSF12, RP11-477D19.2, TFB1M, XXyac-YX65C7_A.2, TAF1C, PCGF2, and BNIP1) associated with IAV at a Bonferroni-corrected threshold of p < 0.05; 14 significant genes (SOAT1, COLGALT2, AC021860.1, HCG11, METTL21B, MRPL10, GSTM4, PAQR6, RP11-617D20.1, SNX8, METTL21B, ANKRD27, CBWD2, and TSFM) associated with measles at a Bonferroni-corrected threshold of p < 0.05; 15 significant genes (MTOR, LAMC1, TRIM38, U91328.21, POLR2J, SCRN2, Smpd4, UBN1, CNTROB, SCRN2, HOXB-AS1, SLC14A1, AC007566.10, AC093668.2, and CPD) associated with mumps at a Bonferroni-corrected threshold of p < 0.05; and 13 significant genes (JAGN1, RRP12, RP11-452K12.7, CASP7, AP3S2, IL17RC, FAM86HP, AMACR, RRP12, PPP2R1B, C11orf1, DLAT, and TMEM117) associated with rubella at a Bonferroni-corrected threshold of p < 0.05. Conclusions: We have identified several candidate genes for IAV, measles, mumps, and rubella in multiple tissues. Our research may further our understanding of the pathogenesis of infectious respiratory diseases.
RESUMEN
Recent studies have shown a correlation between high-density lipoprotein cholesterol (HDL-C) and bone mineral density (BMD) in adults, but their relationship is unclear in adolescents. This study aimed to explore whether a correlation existed between them among adolescents aged 12-19. Data analyzed in our study was fetched from the National Health and Nutrition Examination Survey (NHANES) database 2011-2018. The relationship between HDL-C level and total BMD value was analyzed by multivariate logistic regression models, fitted smoothing curves, and generalized additive models. 3770 participants participated in this analysis. After adjusting for all relevant covariates involved in this study, we found a negative correlation between HDL-C levels and total bone density in male adolescents.Furthermore, the stratified analysis showed that all covariables-adjusted models retained the negative correlation excepting female, black, or Mexican American subgroups. An inverted U-shaped curve represented the correlation of HDL-C and total BMD among adolescents aged 16 to 19, and the turning point was 1.06 mmol/L. After adjusting for all relevant covariates involved in this study, the study found a negative correlation between HDL-C levels and total BMD in male adolescents aged 12 to 19, particularly among those of races other than Black and Mexican. There was a saturation effect between HDL-C level and total BMD in 16-19-year-old adolescents. The turning point was 1.06 mmol/L. Therefore, HDL-C might be a biomarker to detect bone health and further perform a more detailed examination.
Asunto(s)
Densidad Ósea , Adulto , Humanos , Masculino , Femenino , Adolescente , Adulto Joven , HDL-Colesterol , Estudios Transversales , Encuestas Nutricionales , TriglicéridosRESUMEN
Objectives: The prevalence of obesity is on the rise and is connected to numerous factors. However, the relationship between obesity and nickel has never been investigated. Our study aimed to explore the association between urinary nickel and obesity Status in adults. Methods: From the 2017-2018 National Health and Nutrition Examination Surveys (NHANES), 1,705 participants ≥18 years of age were enrolled. To explore further the relationship among urinary nickel, body mass index (BMI), and waist circumference(WC), Weighted multivariate linear regression analyses and further subgroup analyzes were conducted. Results: Urinary nickel does not correlate with BMI level but positively correlates with WC. In the subgroup analyzed according to sex, Urinary nickel has a positive correlation with BMI and WC in males but has a negative correlation in females. Secondary stratification analysis according to sex and race, Urinary nickel positively correlates with BMI in White males. It also positively correlates with WC in both White and Black males. Conclusions: A correlation was found between urinary nickel levels and BMI and WC in adult males. Adult men, especially those already obese, may need to reduce nickel exposure.
Asunto(s)
Níquel , Obesidad , Adulto , Femenino , Humanos , Masculino , Estudios Transversales , Níquel/orina , Encuestas Nutricionales , Obesidad/epidemiología , Obesidad/orinaRESUMEN
Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped positive-stranded RNA virus which causes serious economic losses to pig industry worldwide. Type I IFN induces expression of interferon-stimulated genes 15 (ISG15) to inhibit virus replication. To survive in the host, PRRSV has evolved to antagonize the antiviral response of ISGylation. Previous studies have reported that nonstructural protein 2 of PRRSV inhibits the ISGylation and antiviral function of ISG15 depending on its ovarian tumor (OTU) domain/papain-like protease domain (PLP2). However, whether there are other PRRSV proteins inhibiting ISGylation of cellular proteins is less well understood. In this study, we first found that PRRSV Nsp11 decreased ISGylation of cellular proteins. Meanwhile, the expression level of ISG15 was significantly inhibited by Nsp11. Further mechanistic studies demonstrated that the transcription of ISG15 was reduced by endoribonuclease activity of Nsp11. Finally, we found that the Nsp11-induced degradation of ISG15 was partially relied on autophagy-lysosome system. Taken together, PRRSV Nsp11 antagonizes the antiviral response of ISG15 by its endoribonuclease activity to promote PRRSV replication. Our results reveal a novel mechanism that PRRSV inhibits ISGylation of cellular proteins and impairs host innate immune response.
Asunto(s)
Interferón Tipo I , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Antivirales/farmacología , Línea Celular , Endorribonucleasas/genética , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Inmunidad Innata , Proteínas no Estructurales Virales/metabolismo , Replicación ViralRESUMEN
Foot-and-mouth disease virus (FMDV) has developed various strategies to antagonize the host innate immunity. FMDV Lpro and 3Cpro interfere with type I IFNs through different mechanisms. The structural protein VP3 of FMDV degrades Janus kinase 1 to suppress IFN-γ signaling transduction. Whether non-structural proteins of FMDV are involved in restraining type II IFN signaling pathways is unknown. In this study, it was shown that FMDV replication was resistant to IFN-γ treatment after the infection was established and FMDV inhibited type II IFN induced expression of IFN-γ-stimulated genes (ISGs). We also showed for the first time that FMDV non-structural protein 3C antagonized IFN-γ-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation. 3Cpro expression significantly reduced the ISGs transcript levels and palindromic gamma-activated sequences (GAS) promoter activity, without affecting the protein level, tyrosine phosphorylation, and homodimerization of STAT1. Finally, we provided evidence that 3C protease activity played an essential role in degrading KPNA1 and thus inhibited ISGs mRNA and GAS promoter activities. Our results reveal a novel mechanism by which an FMDV non-structural protein antagonizes host type II IFN signaling.
Asunto(s)
Virus de la Fiebre Aftosa , Interferón Tipo I , Animales , Interferón gamma/farmacología , Virus de la Fiebre Aftosa/genética , Transducción de Señal , Inmunidad Innata , Interferón Tipo I/metabolismoRESUMEN
Pseudorabies virus (PRV) is a member of the genus Varicellovirus, family Herpesviridae and causes Aujeszky's disease to lead to huge economic losses in the global pig industry. The Non-POU domain-containing octamer-binding protein (NONO), as a Drosophila behavior/human splicing (DBHS) protein, plays a key role in multiple biological functions in cells, including transcriptional regulation, RNA splicing, DNA repair and so on. However, whether swine NONO (sNONO) inhibits PRV infection is less understood. In this study, we showed that sNONO was a crucial host factor for antagonizing PRV infection and positive regulated transcription levels of ISGs. After PRV infection, sNONO enhanced the activation of IFN-ß promoter and IFN-ß expression. Furthermore, knockout of sNONO in PAM-KNU cells impaired activation of type I IFN pathway and increased PRV propagation. Taken together, we have first elucidated the anti-PRV function and mechanism of sNONO, which may provide a new strategy for preventing DNA virus infection.
Asunto(s)
Proteínas de Unión al ADN , Seudorrabia , Proteínas de Unión al ARN , Enfermedades de los Porcinos , Animales , Proteínas de Unión al ADN/genética , Herpesvirus Suido 1 , Interferón beta/inmunología , Seudorrabia/inmunología , Proteínas de Unión al ARN/genética , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Factores de TranscripciónRESUMEN
Protein SUMOylation represents an important cellular process that regulates the activities of numerous host proteins as well as of many invasive viral proteins. Foot-and-mouth disease virus (FMDV) is the first animal virus discovered. However, whether SUMOylation takes place during FMDV infection and what role it plays in FMDV pathogenesis have not been investigated. In the present study, we demonstrated that SUMOylation suppressed FMDV replication by small interfering RNA (siRNA) transfection coupled with pharmaceutical inhibition of SUMOylation, which was further confirmed by increased virus replication for SUMOylation-deficient FMDV with mutations in 3C protease, a target of SUMOylation. Moreover, we provided evidence that four lysine residues, Lys-51, -54, -110, and -159, worked together to confer the SUMOylation to the FMDV 3C protease, which may make SUMOylation of FMDV 3C more stable and improve the host's chance of suppressing the replication of FMDV. This is the first report that four lysine residues can be alternatively modified by SUMOylation. Finally, we showed that SUMOylation attenuated the cleavage ability, the inhibitory effect of the interferon signaling pathway, and the protein stability of FMDV 3C, which appeared to correlate with a decrease in FMDV replication. Taken together, the results of our experiments describe a novel cellular regulatory event that significantly restricts FMDV replication through the SUMOylation of 3C protease. IMPORTANCE FMD is a highly contagious and economically important disease in cloven-hoofed animals. SUMOylation, the covalent linkage of a small ubiquitin-like protein to a variety of substrate proteins, has emerged as an important posttranslational modification that plays multiple roles in diverse biological processes. In this study, four lysine residues of FMDV 3C were found to be alternatively modified by SUMOylation. In addition, we demonstrated that SUMOylation attenuated FMDV 3C function through multiple mechanisms, including cleavage ability, the inhibitory effect of the interferon signaling pathway, and protein stability, which, in turn, resulted in a decrease of FMDV replication. Our findings indicate that SUMOylation of FMDV 3C serves as a host cell defense against FMDV replication. Further understanding of the cellular and molecular mechanisms driving this process should offer novel insights to design an effective strategy to control the dissemination of FMDV in animals.
Asunto(s)
Cisteína Endopeptidasas/metabolismo , Virus de la Fiebre Aftosa , Proteasas Virales 3C , Animales , Antivirales , Fiebre Aftosa , Virus de la Fiebre Aftosa/genética , Interacciones Huésped-Patógeno , Lisina/metabolismo , Péptido Hidrolasas/metabolismo , Sumoilación , Replicación ViralRESUMEN
OBJECTIVES: The objective of this research aimed to investigate the correlation involving serum albumin with diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM). METHODS: From 2011 to 2020, the National Health and Nutrition Examination Survey (NHANES) surveyed 45462 participants. We used the relevant data to conduct descriptive statistics, linear regression, and Logistic regression analysis. RESULTS: After adjusting for age, sex, and race, as well as all other variables, serum albumin was significantly negatively related to DR (P<0.001). Furthermore, after controlling for confounding factors, the third quartile (Q3) and the fourth quartile (Q4) had quite a negative significant relationship with the incidence of DR (P<0.01). The second quartile had a significant positive correlation with DR, whereas the observed negative correlations were not statistically meaningful (P>0.05). CONCLUSION: Albumin levels in the serum have a quantitatively significant negative correlation with DR. Serum albumin levels in the blood can be used as a reference point for protracted follow-up of people with T2DM.
Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Retinopatía Diabética/diagnóstico , Humanos , Encuestas Nutricionales , Factores de Riesgo , Albúmina SéricaRESUMEN
The intestinal microbiota plays important roles in animal health and growth. We investigated the efficacy and mechanisms of fecal microbiota transplantation (FMT) from adult SPF chickens against Salmonella Enteritidis (SE) infection in chicks. We transplanted 160 recipient SPF chicks (1-day-old) that were randomly divided into four groups, Ca (challenge), Cb (non-challenge), Fa (FMT and challenge) and Fb (FMT without challenge). The experiment lasted 40 days. We found that FMT reduced mortality as well as liver inflammatory lesions, promoted weight gain, improved immunity, ameliorated the digestion and absorption ability and inhibited SE colonization in the liver of challenged chicks. 16S rRNA gene high-throughput sequencing indicated that SE challenge caused a significant increase in the relative abundance of Parasutterella in the cecal microbiota of the recipient chicks (P < 0.05). FMT led to the maturation of the intestinal flora of recipients and the relative abundance of the Bacteroides, Rikenellaceae_ RC9_ gut_ group, Prevotellaceae_ UCG_ 001, Prevotellaceae_ Ga6A1_ group and Parabacteroides was significantly increased (P < 0.05). FMT from adult SPF chickens regulated the intestinal microbiota of chicks and increased resistance to SE infection.