Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361353

RESUMEN

The global prevalence of type 2 diabetes mellitus has become a major public health challenge. Dietary intervention is a cornerstone of diabetes management, yet the optimal macronutrient composition remains an open question. In this study, mice were fed a western (W) diet, a moderately high-fat (MHF) diet, a high-protein-high-carbohydrate (HPHC) diet, or a high-protein-low-carbohydrate (HPLC) diet for 22 weeks to compare the effects of different dietary patterns on glucose homeostasis. Our results showed that a MHF diet, under consistent nutrient quality, was most beneficial for glucose metabolism. The MHF diet reduced two key inducers of diabetes─lipid accumulation and inflammation. Downregulation of intestinal CD36 induced by loss of Desulfovibrio colonization restrained lipid absorption and lipopolysaccharide (LPS) transport, which played a crucial role in MHF-mediated resistance to lipid accumulation and inflammation. The findings endorse a dietary pattern featuring MHF of appropriate nutrient quality as an effective strategy for diabetes management.

2.
Sci Rep ; 14(1): 23909, 2024 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-39397025

RESUMEN

Land use changes soil microbial and chemical properties, but the mechanism of biological nitrogen fixation under different land use patterns is rarely reported, so we used four types of soil: Natural forest soil (NS), healthy banana soil (HS), diseased banana soil (DS) and paddy soil (PS). Treatments included the control (CK), addition of glucose (G), addition of glucose and ammonium nitrate (GN), addition of banana straw (BS), addition of banana straw and ammonium nitrate (BSN), addition of banana root (BR), and addition of banana root and ammonium nitrate (BRN). The study found that the change of soil utilization types, glucose addition increased carbon dioxide emissions (Compared with the control, increased by 963.11%, 508.39%, 794.77% and 511.34%, respectively) and enhanced the ability of soil microbial nitrogen fixation. Importantly, natural forest soil microorganisms have a higher biological nitrogen fixation capacity compared to other types of soils. Glucose addition caused the accumulation of ammonium nitrogen (Compared with the control, increased by 426.08%, 934.21%, 420% and 1065.95%, respectively), indicating that microorganisms had higher utilization efficiency of soluble carbon and enhanced the biological nitrogen fixation capacity, and nitrogen addition caused the accumulation of ammonium nitrogen, thereby weakening the biological nitrogen fixation capacity. At the same time, glucose significantly increased the Fimicutes phylum (83.73%, 66.38%, 67.18% and 70.36%) and lowered the level of other bacterial phylums, thereby reducing the bacterial network structure, and the stability of the soil environment has decreased. Forest analysis showed that CO2 was an important factor in predicting the bacterial community structure of different soil types, an increase in CO2 content can predict drastic changes in the bacterial community. Bacteria at the Fimicutes phylum level preferred glucose, which may also have a negative effect on bacteria at the level of other phylums.


Asunto(s)
Bosques , Glucosa , Fijación del Nitrógeno , Microbiología del Suelo , Suelo , Glucosa/metabolismo , Suelo/química , Nitrógeno/metabolismo , Dióxido de Carbono/metabolismo
3.
Food Funct ; 15(18): 9116-9135, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39219450

RESUMEN

Konjac glucomannan (KGM) is a dietary fiber supplement that exhibits multiple biological activities, including weight control as well as regulation of glucose and lipid metabolism. Currently, KGM intake patterns in practical applications include KGM sol, thermal irreversible gel, and frozen thermal irreversible gel. In this study, four intake patterns of KGM, namely KGM sol (KS), deacetylated KGM (DK), KGM gel (KG), and frozen KGM gel (FKG), were used as materials to explore the effects of different KGM intake patterns on glucose and lipid metabolism and intestinal flora in obese mice induced by a high fat diet under the same dose. The results showed that any type of KGM intake could reduce body weight, fat mass, lipid levels, and insulin resistance in obese mice, and alleviate liver damage and inflammation caused by obesity. However, KS has the most significant effect on controlling blood glucose and blood lipid in obese mice. Additionally, it was found that KS, DK, KG and FKG can increase the α-diversity of intestinal microflora in high-fat mice and improve the microflora disorder in high-fat mice. Finally, KS may increase the levels of fasting appetite hormones GLP-1 and PYY in mice, up-regulate the expression of LDLR, GCK and G-6-pase mRNA, and increase the production of short-chain fatty acids (SCFAs) in the intestinal flora of mice, thus regulating glucose and lipid metabolism. This study systematically investigated the effects of different intake forms of KGM on metabolism and intestinal flora in obese mice, which is of great significance for further understanding the role of KGM in the prevention and treatment of obesity-related metabolic diseases and for developing targeted dietary interventions.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Mananos , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad , Animales , Mananos/farmacología , Mananos/administración & dosificación , Ratones , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Resistencia a la Insulina , Glucemia/metabolismo , Glucosa/metabolismo , Fibras de la Dieta/farmacología , Péptido YY/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos
4.
Sci Bull (Beijing) ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39174400

RESUMEN

Alloying-type anode materials are considered promising candidates for next-generation alkali-ion batteries. However, they face significant challenges owing to severe volume variations and sluggish kinetics, which hinder their practical applications. To address these issues, we propose a universal synthetic strategy, which can realize the facile synthesis of various alloying-type anode materials composed of a porous carbon matrix with uniformly embedded nanoparticles (Sb, Bi, or Sn). Besides, we construct the interactions among active materials, electrolyte compositions, and the resulting interface chemistries. This understanding assists in establishing balanced kinetics and stability. As a result, the fabricated battery cells based on the above strategy demonstrate high reversible capacity (515.6 mAh g-1), long cycle life (200 cycles), and excellent high-rate capability (at 5.0 C). Additionally, it shows improved thermal stability at 45 and 60 °C. Moreover, our alloying-type anodes exhibit significant potential for constructing a 450 Wh kg-1 battery system. This proposed strategy could boost the development of alloying-type anode materials, aligning with the future demands for low-cost, high stability, high safety, wide-temperature, and fast-charging battery systems.

5.
Adv Mater ; 36(39): e2409436, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39120050

RESUMEN

Dual-atom catalysts (DACs) originate unprecedented reactivity and maximize resource efficiency. The fundamental difficulty lies in the high complexity and instability of DACs, making the rational design and targeted performance optimization a grand challenge. Here, an atomically dispersed Pd2 DAC with an in situ generated Pd─Pd bond is constructed by a dynamic strategy, which achieves high activity and selectivity for semi-hydrogenation of alkynes and functional internal acetylene, twice higher than commercial Lindlar catalyst. Density functional theory calculations and systematic experiments confirms the ultrahigh properties of Pd2 DAC originates from the synergistic effect of the dynamically generated Pd─Pd bonds. This discovery highlights the potential for dynamic strategies and opens unprecedented possibilities for the preparation of robust DACs on an industrial scale.

6.
Int J Biol Macromol ; 272(Pt 2): 132905, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862317

RESUMEN

Wheat bran is an abundant yet underutilized agricultural byproduct. Herein, the insoluble dietary fiber from wheat bran (WBIDF) was ultra-milled to investigate its impact on physicochemical properties and gastrointestinal emptying. SEM and CLSM showed that the laminar structure of WBIDF was disrupted as the particle size was significantly reduced. In the similar characteristic peaks appearing at 3410, 2925, 1635, 1041, and 895 cm-1 in the FT-IR spectra and at 2940, 1593, 1080, and 526 cm-1 in the Raman spectra, the peak intensity was increased as the particle size decreased. It may be that the hydrogen bonding between cellulose, hemicellulose, or other macromolecules was enhanced. X-ray diffraction showed cellulose type I results for all five samples. Correspondingly, the water-holding, swelling, and oil-holding capacities increased by 75.33 %, 52.62 %, and 75.00 %, respectively, in WBIDF-CW1.8 compared with WBIDF-CWy. Additionally, smaller particle sizes had lower viscosity, thereby enhancing intestinal propulsion and gastric emptying rates. Enhanced contact of the cecal tissue growth factor with the intestinal mucosa delayed ghrelin secretion and stimulated the secretion of motilin, gastrin, and cholecystokinin. In conclusion, the particle sizes of WBIDF were reduced through ultramicro-grinding, leading to altered structure, enhanced hydration and oil-holding capacities, decreased viscosity, and improved gastrointestinal emptying capacity.


Asunto(s)
Fibras de la Dieta , Vaciamiento Gástrico , Tamaño de la Partícula , Fibras de la Dieta/análisis , Animales , Ratones , Cinética , Solubilidad , Masculino , Viscosidad
7.
Front Microbiol ; 15: 1347704, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873143

RESUMEN

The heterogeneous composition of fungi plays an indispensable role in the foundation of the multifunctionalities of ecosystems within drylands. The precise mechanisms that govern fluctuations in soil fungal assemblages in dryland ecosystems remain incompletely elucidated. In this study, biological soil crusts (biocrusts) at different successional stages in the Gurbantunggut Desert were used as substrates to examine the characteristics and driving factors that influence fungal abundance and community dynamics during biocrust development using qPCR and high-throughput sequencing of the ITS2 region. The findings showed that the physicochemical properties changed significantly with the development of biocrusts. In particular, total nitrogen increased 4.8 times, along with notable increases in ammonium, total phosphorus (2.1 times) and soil organic carbon (6.5 times). Initially, there was a rise in fungal abundance, which was subsequently followed by a decline as the biocrust developed, with the highest abundance detected in lichen crust (2.66 × 107 copies/g soil) and the lowest in bare sand (7.98 × 106 copies/g soil). Ascomycetes and Basidiomycetes emerged as dominant phyla, collectively forming 85% of the fungal community. As the biocrust developed, noticeable alterations occurred in fungal community compositions, resulting from changes in the relative proportions of Dothideomycetes, Lecanoromycetes and unclassified ascomycetes. Nitrogen, phosphorus, organic carbon content, and pH of biocrusts were identified as direct or indirect regulators of fungal abundance and community structure. The complexity of fungal networks increased as biocrusts developed as revealed by network analysis, but reduced in the stability of fungal communities within algal and lichen crusts. Keystone species within the fungal community also underwent changes as biocrust developed. These results suggested that shifts in interspecies relationships among fungi could further contribute to the variation in fungal communities during the development of biocrusts.

8.
Nanoscale Horiz ; 9(9): 1506-1513, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38919145

RESUMEN

The design and synthesis of highly durable and active electrocatalysts are crucial for improving the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). In this work, we present a novel dealloyed nanoporous PtCuNiCoMn multicomponent alloy with ligaments/pores ranging from 2-3 nm, which is in situ encapsulated in a three-dimensional, free-standing nanoporous nanotubular graphene network featuring a pore/tube diameter of ∼200 to 300 nm. This method allows precise control over the noble metal loading and alloy composition while preventing noble metal loss throughout the preparation process. The innovative bimodal nanoporous graphene/alloy structure, coupled with an open 3D spongy morphology, and optimized surface Pt electronic structure through multicomponent interaction, significantly enhances the activity for the HER/ORR, outperforming commercial Pt/C. Moreover, this design addresses the issues of Pt nanoparticle aggregation and detachment from carbon supports that typically exist in Pt/C-type catalysts, thereby substantially improving the catalytic durability, even under intense gas bubbling conditions.

9.
Int J Biol Macromol ; 270(Pt 2): 132232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734349

RESUMEN

High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.


Asunto(s)
Fármacos Antiobesidad , Microbioma Gastrointestinal , Inulina , Obesidad , Solubilidad , Taninos , Inulina/química , Inulina/farmacología , Taninos/química , Taninos/farmacología , Animales , Ratones , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/química , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Polimerizacion , Diospyros/química , Masculino , Dieta Alta en Grasa/efectos adversos , Polifenoles/química , Polifenoles/farmacología
10.
Plant Physiol Biochem ; 211: 108694, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714131

RESUMEN

Using natural clinoptilolite (NCP) as a carrier and alginate (Alg)-calcium as an active species, the porous silicon calcium alginate nanocomposite (Alg-Ca-NCP) was successfully fabricated via adsorption-covalence-hydrogen bond. Its structural features and physicochemical properties were detailed investigated by various characterizations. The results indicated that Alg-Ca-NCP presented the disordered lamellar structures with approximately uniform particles in size of 300-500 nm. Specially, their surface fractal evolutions between the irregular roughness and dense structures were demonstrated via the SAXS patterns. The results elucidated that the abundant micropores of NCP were beneficial for unrestricted diffusing of Alg-Ca, which was conducive to facilitate a higher loading and sustainable releasing. The Ca content of leaf mustard treated with Alg-Ca-NCP-0.5 was 484.5 mg/100g on the 21st day, higher than that by water (CK) and CaCl2 solution treatments, respectively. Meanwhile, the prepared Alg-Ca-NCPs presented the obvious anti-aging effects on peroxidase drought stress of mustard leaves. These demonstrations provided a simple and effective method to synthesize Alg-Ca-NCPs as delivery nanocomposites, which is useful to improve the weak absorption and low utilization of calcium alginate by plants.


Asunto(s)
Alginatos , Planta de la Mostaza , Zeolitas , Alginatos/química , Alginatos/farmacología , Zeolitas/química , Zeolitas/farmacología , Planta de la Mostaza/metabolismo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/química , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/química , Porosidad , Brassica/metabolismo , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Ácido Glucurónico/química , Nanocompuestos/química , Difracción de Rayos X , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo
11.
Angew Chem Int Ed Engl ; 63(23): e202405428, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38563631

RESUMEN

The extensively studied Prussian blue analogs (PBAs) in various batteries are limited by their low discharge capacity, or subpar rate etc., which are solely reliant on the cation (de)intercalation mechanism. In contrast to the currently predominant focus on cations, we report the overlooked anion-cation competition chemistry (Cl-, K+, Zn2+) stimulated by high-voltage scanning. With our designed anion-cation combinations, the KFeMnHCF cathode battery delivers comprehensively superior discharge performance, including voltage plateau >2.0 V (vs. Zn/Zn2+), capacity >150 mAh g-1, rate capability with capacity maintenance above 96 % from 0.6 to 5 A g-1, and cyclic stability exceeding 3000 cycles. We further verify that such comprehensive improvement of electrochemical performance utilizing anion-cation competition chemistry is universal for different types of PBAs. Our work would pave a new and efficient road towards the next-generation high-performance PBAs cathode batteries.

12.
Se Pu ; 42(3): 245-255, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38503701

RESUMEN

Dried blood spot (DBS) technology is a simple and convenient method for collecting, transporting, and storing blood samples on filter paper, and has numerous applications in the clinical, research, and public health settings. This technique is gaining popularity in the field of forensic science because it facilitates the rapid analysis of prohibited drugs in blood samples and offers significant advantages in toxicology scenarios such as drinking-driving screening, drug abuse detection, and doping detection. However, the lack of a standardized system and the fact that its stability and reliability have not been thoroughly researched and demonstrated limit its application in judicial practice in China. DBS samples can be prepared, stored, and analyzed in various ways, all of which may significantly affect the results. In this study, we developed a method based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) that focuses on the preparation, pretreatment, analysis, and storage of DBS samples. A thorough investigation was conducted to examine the optimal preparation conditions, including the blood spot matrix, drying technique, and preprocessing parameters, such as the solvent and extraction method. Moreover, the analytical conditions, such as the mobile phase system and elution gradient, were established to facilitate the quantitative detection of methamphetamine, lidocaine, ketamine, fentanyl, and diazepam in both DBS and whole-blood samples. The impact of storage conditions, such as the temperature, humidity, and sealing, on the analytical results of the DBS and whole-blood samples was also examined. The results showed a strong linear relationship for lidocaine and fentanyl within the range of 0.5-100 ng/mL. Similarly, methamphetamine, ketamine, and diazepam exhibited good linearity within the range of 2-100 ng/mL. The coefficients of determination (r2) ranged from 0.9983 to 0.9997, and the limits of detection ranged from 0.2 to 0.5 ng/mL, indicating a high degree of correlation and sensitivity. Stability tests demonstrated that the five target substances remained stable in the DBS for 60 days, with the measured contents deviating from the nominal values by 15%. Moreover, the measurement results of the DBS samples were highly similar to those of the whole-blood samples, with mean percentage differences of 4.44%, 3.50%, 7.66%, 5.10%, and 5.25% for fentanyl, diazepam, ketamine, lidocaine, and methamphetamine, respectively. Throughout the 60-day storage period, the maintenance of temperatures of -20 and 4 ℃, as well as sealing and dry storage, was not necessary. Room temperature was the most practical storage environment for the DBS samples. The results for each target showed very small concentration differences between the whole-blood and DBS samples, indicating that the DBS samples were suitable for drug and poison analysis in blood. Furthermore, the DBSs exhibited high quantitative consistency with the whole-blood samples, rendering them suitable matrices for preserving blood samples. Because DBS samples are easy to handle and store, they can realize the lightweight preservation of blood samples and provide a novel solution for the analysis and preservation of blood samples in public security practice. We recommend conducting comprehensive validations before utilizing DBS for analysis, particularly in terms of quantification, to ensure the judicial reliability of the results.


Asunto(s)
Ketamina , Metanfetamina , Venenos , Espectrometría de Masas en Tándem/métodos , Toxicología Forense , Reproducibilidad de los Resultados , Pruebas con Sangre Seca/métodos , Fentanilo , Diazepam , Lidocaína
13.
Anal Methods ; 16(8): 1196-1205, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38312040

RESUMEN

In the present study, an efficient and rapid method for the preparation of high-purity typical alkylamides from Zanthoxylum bungeanum (Z. bungeanum) pericarps using medium-pressure liquid chromatography (MPLC) was developed. Under the optimized conditions using a mobile phase of methanol : water (70 : 30, v/v) at a flow rate of 25 mL min-1 and one run for 30 min, hydroxy-α-sanshool with a purity of 97.85% could be obtained. Sensory evaluation and electronic tongue analysis of the hydroxyl-α-sanshool were performed, and the aftertastes of bitterness and astringency were found to be more representative of the compounds in Chinese prickly ash that causes numbness, which has not been reported in the literature before. An electronic tongue prediction model for the evaluation of numbing intensity was established: Y = 20.452X1 - 7.594X2 - 2.876, R2 = 0.973, where Y is a sensory evaluation value based on the 15 cm linear scale method and X1 and X2 are the aftertastes from astringency and bitterness, respectively. The evaluation model can be used for the evaluation of the numbing intensity of amides of Zanthoxylum bungeanum.


Asunto(s)
Amidas , Zanthoxylum , Zanthoxylum/química , Hipoestesia , Nariz Electrónica , Cromatografía Liquida
14.
Small ; : e2310633, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279636

RESUMEN

Silicon-based materials have been considered potential anode materials for next-generation lithium-ion batteries based on their high theoretical capacity and low working voltage. However, side reactions at the Si/electrolyte interface bring annoying issues like low Coulombic efficiency, sluggish ionic transport, and inferior temperature compatibility. In this work, the surface Al2 O3 coating layer is proposed as an artificial solid electrolyte interphase (SEI), which can serve as a physical barrier against the invasion of byproducts like HF(Hydrogen Fluoride) from the decomposition of electrolyte, and acts as a fast Li-ion transport pathway. Besides, the intrinsically high mechanical strength can effectively inhibit the volume expansion of the silicon particles, thus promoting the cyclability. The as-assembled battery cell with the Al2 O3 -coated Si-C anode exhibits a high initial Coulombic efficiency of 80% at RT and a capacity retention ratio up to ≈81.9% after 100 cycles, which is much higher than that of the pristine Si-C anode (≈74.8%). Besides, the expansion rate can also be decreased from 103% to 50%. Moreover, the Al2 O3 -coated Si-C anode also extends the working temperature from room temperature to 0 °C-60 °C. Overall, this work provides an efficient strategy for regulating the interface reactions of Si-based anode and pushes forward the practical applications at real conditions.

15.
Small ; 20(23): e2309068, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38149506

RESUMEN

In direct methanol fuel cells (DMFCs), the poisoning of noble metals is considered to be a major impediment to their commercial development. Here, it is found that the loss of surface Pt is one main reason for the attenuation of catalyst performance during long-time methanol oxidation reaction (MOR). A strategy to realize in situ resurrection of the deactivated catalyst by migrating Pt atoms inside to the surface is innovatively proposed. A high-activity Pt-SnO2 is designed, whose MOR activity is resurrected to 97.4% of the initial value. Based on this, the multiple resurrection of a DMFC device is also achieved for the first time. This work provides a new approach for the solution of catalyst deactivation and the development of sustainable catalysts as well as fuel cells.

16.
Small Methods ; 8(8): e2301322, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38135872

RESUMEN

High-entropy oxides (HEOs) have been showing great promise in a wide range of applications. There remains a lack of clarity regarding the influence of nanostructure and composition on their Li storage performance. Herein, a dealloying technique to synthesize hierarchical nanoporous HEOs with tunable compositions is employed. Building upon the extensively studied quinary AlFeNiCrMnOx, an additional element (Co, V, Ti, or Cu) is introduced to create senary HEOs, allowing for investigation of the impact of the added component on Li storage performance. With higher specific surface areas and oxygen vacancy concentrations, all their HEOs exhibit high Li storage performances. Remarkably, the senary HEO with the addition of V (AlNiFeCrMnVOx) achieves an impressive capacity of 730.2 mAh g-1 at 2.0 A g-1, which surpasses all reported performance of HEOs. This result demonstrates the synergistic interaction of the six elements in one HEO nanostructure. Additionally, the battery cycling-induced reconstruction and cation diffusion in the HEOs is uncovered, which results in an initial capacity decrease followed by a subsequent continuous capacity increase and enhanced Li ion diffusion. The results highlight the crucial roles played by both nanoporous structure design and composition optimization in enhancing Li storage of HEOs.

17.
Nano Lett ; 23(22): 10554-10562, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37916621

RESUMEN

Nanoporous high-entropy oxide (np-HEO) powders with tunable composition are integrated with a poly(vinylidene fluoride) network to create self-floating solar absorber films for seawater desalination. By progressively increasing the element count, we obtain an optimized 9-component AlNiCoFeCrMoVCuTi-Ox. Density functional theory (DFT) calculations reveal a remarkable reduction in its bandgap, facilitating the light-induced migration of electrons to conduction bands to generate electron-hole pairs, which recombine to produce heat. Simultaneously, the intricate light reflection and refraction pathways, shaped by the nanoporous structure, coupled with the reduced thermal conductivity attributed to the suboptimal crystalline quality of the np-HEO ensure an effective conversion of captured light into thermal energy. Consequently, all these films demonstrate an impressive absorbance rate exceeding 93% across the 250-2500 nm spectral range. Under one sun, the surface temperature of the 9-component film rapidly rises to 110 °C within 90 s with a high pure water evaporation rate of 2.16 kg m-2 h-1.

18.
ACS Appl Mater Interfaces ; 15(37): 43550-43562, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672350

RESUMEN

The high temperature induced by surgical electrodes is highly susceptible to severe surface adhesion and thermal damage to adjacent tissues, which is a major challenge in improving the quality of electrosurgery. Herein, we reported a coupled electrode with micro/nano hierarchical structures fabricated by depositing nanoscale hafnium oxide (HfO2) coatings on bionic microstructures (BMs) via laser texturing, acid washing, and atomic layer deposition (ALD) techniques. The synergistic effect of HfO2 coatings and BMs greatly enhanced the hemophobicity of the electrode with a blood contact angle of 162.15 ± 3.16°. Furthermore, the coupled surface was proven to have excellent antiadhesive properties to blood when heated above 100 °C, and the underlying mechanism was discussed. Further experiments showed that the coupled electrode had significant advantages in reducing cutting forces, thermal damage, and tissue adhesion mass. Moreover, the antibacterial rates against Escherichia coli and Staphylococcus aureus were 97.2% and 97.9%, respectively. In addition, the noncytotoxicity levels of HfO2 coatings were verified by cell apoptosis and cycle assays, indirectly endowing the coupled electrode with biocompatibility. Overall, the coupled electrode was shown to have broad potential for application in the field of electrosurgery, and this work could provide new insights into antiadhesion properties under high-temperature conditions.


Asunto(s)
Biónica , Electrocirugia , Antibacterianos/farmacología , Apoptosis , Electrodos , Escherichia coli
19.
Food Chem ; 426: 136540, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37315419

RESUMEN

High-fat diet is a risk factor for many chronic diseases, whose symptoms are probably regulated by ingesting food ingredients such as resistant starch. For cooked rice stored in cold-chain, the starch component can retrograde to generate ordered structures (helices and crystallites) and become resistant. However, the role of retrograded starch in managing hyperlipidemia symptoms is insufficiently understood. Here, compared to the normal high-fat diet, ingesting retrograded starch reduced the triglyceride and low-density lipoprotein cholesterol levels of high-fat diet mice by 17.69% and 41.33%, respectively. This relieved hyperlipidemia could be linked to the changes in intestinal bacteria. Retrograded starch intervention increased the relative abundance of Bacteroides (2.30 times higher), which produces propionic acid (increased by 8.26%). Meanwhile, Bacteroides were positively correlated with butyric acid (increased by 98.4%) with strong anti-inflammatory functions. Hence, retrograded starch intervention may regulate the body's health by altering intestinal bacteria.


Asunto(s)
Hiperlipidemias , Oryza , Ratones , Animales , Almidón/química , Dieta Alta en Grasa/efectos adversos , Oryza/química , Hiperlipidemias/etiología , Hiperlipidemias/genética , Ácido Butírico , Bacterias/genética
20.
Int J Biol Macromol ; 242(Pt 3): 125120, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37263329

RESUMEN

One distinguishing feature of the persimmon, that differentiates it from other fruits, is its high proanthocyanidins content, known as persimmon tannin (PT). Despite the poor absorption of PT in the small intestine, results from animal studies demonstrate that PT has many health benefits. Our goal in this review is to summarize the literature that elucidates the relationship between PT structure and activity. In addition, we also summarize the potential mechanisms underlying the health benefits that result from PT consumption; this includes the hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, antiradiation, antibacterial and antiviral, detoxification effects on snake venom, and the absorption of heavy metals and dyes. Studies show that PT is a structurally distinct proanthocyanidins that exhibits a high degree of polymerization. It is galloylation-rich and possesses unique A-type interflavan linkages in addition to the more common B-type interflavan bonds. Thus, PT is converted into oligomeric proanthocyanidins by depolymerization strategies, including the nucleophilic substitution reaction, acid hydrolysis, and hydrogenolysis. In addition, multiple health benefits exerted by PT mainly involve the inactivation of lipogenic and intracellular inflammatory signaling pathways, activation of the fatty acid oxidation signaling pathway, regulation of gut microbiota, and highly absorptive properties.


Asunto(s)
Diospyros , Proantocianidinas , Animales , Taninos/química , Extractos Vegetales/química , Proantocianidinas/farmacología , Proantocianidinas/química , Diospyros/química , Frutas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...