Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Heliyon ; 10(10): e30907, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38770283

RESUMEN

Aims: This study aims to delve into the anti-fatigue and sleep-aiding effects of various formulations containing Ganoderma lucidum extracts. Materials and methods: PGB [incorporating Ganoderma lucidum extract (GE), broken Ganoderma lucidum spore powder (GB) and Paecilomyces hepiali mycelium (PH)] and GBS [composed of GE, GB, and Ganoderma sinense powder (GS)] were chosen as representative recipes for this study. Mice were treated with these recipes or key components of Ganoderma lucidum for 14 consecutive days. Subsequently, a weight-bearing swimming experiment was conducted to assess the mice's exhaustion time and evaluate the anti-fatigue properties of the recipes. Sleep-aiding effects were analyzed by measuring the sleep latency and duration. Furthermore, levels of blood lactic acid, serum urea nitrogen, hepatic glycogen, muscle glycogen, and malondialdehyde (MDA) were measured in the livers and muscles. Key findings: The anti-fatigue abilities of the tested mice were significantly improved after treatment with PGB and their sleep quality improved as well with GBS treatment. PGB treatment for 14 days could significantly prolong the exhaustion time in weight-bearing swimming (from 10.1 ± 0.5 min to 15.2 ± 1.3 min). Meanwhile, glycogen levels in the livers and muscles were significantly increased, while the levels of serum lactic acid, serum urea nitrogen, and MDA in the livers and muscles were significantly decreased. In contrast, mice treated with GBS for 14 days experienced significant improvements in sleep quality, with shortened sleep latency (from 6.8 ± 0.7 min to 4.2 ± 0.4 min), extended sleep duration (from 88.3 ± 1.4 min to 152.5 ± 9.3 min), and decreased muscle MDA levels. These results indicated that Ganoderma lucidum extracts can be used for anti-fatigue and or aid in sleeping, depending on how they are prepared and administered. Significance: This study provides experimental evidence and theoretical basis for the development of Ganoderma lucidum recipes that are specifically designed to help with anti-fatigue and sleep.

2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38770717

RESUMEN

Drug therapy is vital in cancer treatment. Accurate analysis of drug sensitivity for specific cancers can guide healthcare professionals in prescribing drugs, leading to improved patient survival and quality of life. However, there is a lack of web-based tools that offer comprehensive visualization and analysis of pancancer drug sensitivity. We gathered cancer drug sensitivity data from publicly available databases (GEO, TCGA and GDSC) and developed a web tool called Comprehensive Pancancer Analysis of Drug Sensitivity (CPADS) using Shiny. CPADS currently includes transcriptomic data from over 29 000 samples, encompassing 44 types of cancer, 288 drugs and more than 9000 gene perturbations. It allows easy execution of various analyses related to cancer drug sensitivity. With its large sample size and diverse drug range, CPADS offers a range of analysis methods, such as differential gene expression, gene correlation, pathway analysis, drug analysis and gene perturbation analysis. Additionally, it provides several visualization approaches. CPADS significantly aids physicians and researchers in exploring primary and secondary drug resistance at both gene and pathway levels. The integration of drug resistance and gene perturbation data also presents novel perspectives for identifying pivotal genes influencing drug resistance. Access CPADS at https://smuonco.shinyapps.io/CPADS/ or https://robinl-lab.com/CPADS.


Asunto(s)
Resistencia a Antineoplásicos , Internet , Neoplasias , Programas Informáticos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Resistencia a Antineoplásicos/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biología Computacional/métodos , Bases de Datos Genéticas , Transcriptoma , Perfilación de la Expresión Génica/métodos
3.
Chem Biol Interact ; 396: 111061, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763347

RESUMEN

Nerve agents pose significant threats to civilian and military populations. The reactivation of acetylcholinesterase (AChE) is critical in treating acute poisoning, but there is still lacking broad-spectrum reactivators, which presents a big challenge. Therefore, insights gained from the reactivation kinetic analysis and molecular docking are essential for understanding the behavior of reactivators towards intoxicated AChE. In this research, we present a systematic determination of the reactivation kinetics of three V agents-inhibited four human ChEs [(AChE and butyrylcholinesterase (BChE)) from either native or recombinant resources, namely, red blood cell (RBC) AChE, rhAChE, hBChE, rhBChE) reactivated by five standard oximes. We unveiled the effect of native and recombinant ChEs on the reactivation kinetics of V agents ex vitro, where the reactivation kinetics characteristic of Vs-inhibited BChE was reported for the first time. In terms of the inhibition type, all of the five oxime reactivators exhibited noncompetitive inhibition. The inhibition potency of these reactivators would not lead to the difference in the reactivation kinetics between native and recombinant ChE. Despite the significant differences between the native and recombinant ChEs observed in the inhibition, aging, and spontaneous reactivation kinetics, the reactivation kinetics of V agent-inhibited ChEs by oximes were less differentiated, which were supported by the ligand docking results. We also found differences in the reactivation efficiency between five reactivators and the phosphorylated enzyme, and molecular dynamic simulations can further explain from the perspectives of conformational stability, hydrogen bonding, binding free energies, and amino acid contributions. By Poisson-Boltzmann surface area (MM-PBSA) calculations, the total binding free energy trends aligned well with the experimental kr2 values.

4.
Transl Vis Sci Technol ; 13(5): 21, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38780954

RESUMEN

Purpose: This study aimed to investigate the possible relationship between retinal vascular abnormalities and amblyopia by analyzing vascular structures of fundus images. Methods: In this observational study, retinal fundus images were collected from 36 patients with unilateral amblyopia, 33 patients with bilateral amblyopia, and 36 healthy control volunteers. We developed a customized training algorithm based on U-Net to digitalize the vasculature in the fundus images to quantify vascular density (area and fractal dimension), skeleton length, and number of bifurcation points. For statistical comparisons, this study divided participants into two groups. The amblyopic eyes and the fellow eyes of patients with unilateral amblyopia formed the paired group, while bilateral amblyopic patients and healthy controls formed the independent group. Results: In the paired group, the vascular area (P = 0.007), vascular fractal dimension (P = 0.007), and vascular skeleton length (P = 0.002) of the amblyopic eyes were significantly smaller than those of the fellow eyes. In the independent group, significant decreases in the vascular fractal dimension (P = 0.006) and skeleton length (P = 0.048) were observed in bilateral amblyopia compared to control. The vascular area was also significantly correlated with best-corrected visual acuity in amblyopic eyes. Conclusions: This study demonstrated that retinal vascular density and skeleton length in amblyopic eyes were significantly smaller compared to control, indicating an association between the changes in retinal vascular features and the state of amblyopia. Translational Relevance: Our algorithm presents amblyopic retinal vascular changes that are more biologically interpretable for both clinicians and researchers.


Asunto(s)
Algoritmos , Ambliopía , Vasos Retinianos , Agudeza Visual , Humanos , Ambliopía/fisiopatología , Ambliopía/patología , Femenino , Masculino , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/patología , Agudeza Visual/fisiología , Adulto , Adulto Joven , Adolescente , Niño , Fractales , Densidad Microvascular
5.
Front Microbiol ; 15: 1402921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756733

RESUMEN

Alterations in the microbial community significantly impact the yield and quality of ginseng. Yet, the dynamics of microbial community shifts within the root endophytes of ginseng across varying cultivation periods remain inadequately understood. This study zeroes in on the microbial community variations within the xylem (M), phloem (R), and fibrous roots (X) of ginseng during the fourth (F4) and fifth (F5) years of cultivation, aiming to bridge this research gap. We assessed soil physicochemical properties, enzyme activities, and nine individual saponins, complemented by high-throughput sequencing techniques (16S rDNA and ITS) to determine their profiles. The results showed that cultivation years mainly affected the microbial diversity of endophytic bacteria in ginseng fibrous roots compartment: the ASVs number and α-diversity Chao1 index of bacteria and fungi in F5X compartment with higher cultivation years were significantly higher than those in F4X compartment with lower cultivation years. It is speculated that the changes of fibrous roots bacterial groups may be related to the regulation of amino acid metabolic pathway. Such as D-glutamine and D-glutamate metabolism D-glutamine, cysteine and methionine metabolism regulation. The dominant bacteria in ginseng root are Proteobacteria (relative abundance 52.07-80.35%), Cyanobacteria (1.97-42.52%) and Bacteroidota (1.11-5.08%). Firmicutes (1.28-3.76%). There were two dominant phyla: Ascomycota (60.10-93.71%) and Basidiomycota (2.25-30.57%). Endophytic fungi were more closely related to soil physicochemical properties and enzyme activities. AN, TK, OP, SWC and EC were the main driving factors of endophytic flora of ginseng root. Tetracladium decreased with the increase of cultivation years, and the decrease was more significant in phloem (F4R: 33.36%, F5R: 16.48%). The relative abundance of Bradyrhizobium, Agrobacterium and Bacillus in each ecological niche increased with the increase of cultivation years. The relative abundance of Bradyrhizobium and Agrobacterium in F5X increased by 8.35 and 9.29 times, respectively, and Bacillus in F5M increased by 5.57 times. We found a variety of potential beneficial bacteria and pathogen antagonists related to ginseng biomass and saponins, such as Bradyrhizobium, Agrobacterium, Bacillus and Exophiala, which have good potential for practical application and development.

6.
Org Biomol Chem ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768281

RESUMEN

Nuclear imaging of aggregated α-synuclein pathology is an urgent clinical need for Parkinson's disease, yet promising tracers for brain α-synuclein aggregates are still rare. In this work, a class of compact benzothiazole derivatives was synthesized and evaluated for α-synuclein aggregates. Among them, azobenzothiazoles exhibited specific and selective detection of α-synuclein aggregates under physiological conditions. Fluoro-pegylated azobenzothiazole NN-F further demonstrated high-affinity binding to α-synuclein aggregates and efficient 18F-radiolabeling via nucleophilic displacement of a tosyl precursor. [18F]NN-F was stable in plasma in vitro and showed efficient brain uptake with little defluorination in vivo.

7.
J Agric Food Chem ; 72(18): 10459-10468, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38666490

RESUMEN

Violaxanthin is a plant-derived orange xanthophyll with remarkable antioxidant activity that has wide applications in various industries, such as food, agriculture, and cosmetics. In addition, it is the key precursor of important substances such as abscisic acid and fucoxanthin. Saccharomyces cerevisiae, as a GRAS (generally regarded as safe) chassis, provides a good platform for producing violaxanthin production with a yield of 7.3 mg/g DCW, which is far away from commercialization. Herein, an integrated strategy involving zeaxanthin epoxidase (ZEP) source screening, cytosol redox state engineering, and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration was implemented to enhance violaxanthin production in S. cerevisiae. 58aa-truncated ZEP from Vitis vinifera exhibited optimal efficiency in an efficient zeaxanthin-producing strain. The titer of violaxanthin gradually increased by 17.9-fold (up to 119.2 mg/L, 15.19 mg/g DCW) via cytosol redox state engineering and NADPH supplementation. Furthermore, balancing redox homeostasis considerably improved the zeaxanthin concentration by 139.3% (up to 143.9 mg/L, 22.06 mg/g DCW). Thus, the highest reported titers of violaxanthin and zeaxanthin in S. cerevisiae were eventually achieved. This study not only builds an efficient platform for violaxanthin biosynthesis but also serves as a useful reference for the microbial production of xanthophylls.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Vitis , Xantófilas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Xantófilas/metabolismo , Vitis/metabolismo , Vitis/microbiología , Vitis/química , Oxidación-Reducción , Zeaxantinas/metabolismo , Zeaxantinas/biosíntesis , NADP/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/genética
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167170, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631407

RESUMEN

Intimal hyperplasia (IH) is a common pathological feature of vascular proliferative diseases, such as atherosclerosis and restenosis after angioplasty. Urotensin II (UII) and its receptor (UTR) are widely expressed in cardiovascular tissues. However, it remains unclear whether the UII/UTR system is involved in IH. Right unilateral common carotid artery ligation was performed and maintained for 21 days to induce IH in UTR knockout (UTR-/-) and wild-type (WT) mice. Histological analysis revealed that compared with WT mice, UTR-deficient mice exhibited a decreased neointimal area, angiostenosis and intima-media ratio. Immunostaining revealed fewer smooth muscle cells (SMCs), endothelial cells and macrophages in the lesions of UTR-/- mice than in those of WT mice. Protein interaction analysis suggested that the UTR may affect cell proliferation by regulating YAP and its downstream target genes. In vitro experiments revealed that UII can promote the proliferation and migration of SMCs, and western blotting also revealed that UII increased the protein expression of RhoA, CTGF, Cyclin D1 and PCNA and downregulated p-YAP protein expression, while these effects could be partly reversed by urantide. To evaluate the translational value of UTRs in IH management, WT mice were also treated with two doses of urantide, a UTR antagonist, to confirm the benefit of UTR blockade in IH progression. A high dose of urantide (600 µg/kg/day), rather than a low dose (60 µg/kg/day), successfully improved ligation-induced IH compared with that in mice receiving vehicle. The results of the present study suggested that the UII/UTR system may regulate IH partly through the RhoA-YAP signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proliferación Celular , Hiperplasia , Ratones Noqueados , Receptores Acoplados a Proteínas G , Transducción de Señal , Proteínas Señalizadoras YAP , Proteína de Unión al GTP rhoA , Animales , Proteínas Señalizadoras YAP/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Hiperplasia/metabolismo , Hiperplasia/patología , Ligadura , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Masculino , Túnica Íntima/patología , Túnica Íntima/metabolismo , Urotensinas/metabolismo , Urotensinas/genética , Urotensinas/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratones Endogámicos C57BL , Movimiento Celular , Neointima/metabolismo , Neointima/patología , Neointima/genética
9.
Langmuir ; 40(18): 9688-9701, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38654502

RESUMEN

Rubidium (Rb) and cesium (Cs) have important applications in highly technical fields. Salt lakes contain huge reserves of Rb and Cs with industrial significance, which can be utilized after extraction. In this study, a composite magnetic adsorbent (Fe3O4@ZIF-8@AMP, AMP = ammonium phosphomolybdate) was prepared and its adsorption properties for Rb+ and Cs+ were studied in simulated and practical brine. The structure of the adsorbent was characterized by SEM, XRD, N2 adsorption-desorption, FT-IR, and vibrating sample magnetometer (VSM). The adsorbent had good adsorption affinity for Rb+ and Cs+. The Langmuir model and pseudo-second-order dynamics described the adsorbing isotherm and kinetic dates, respectively. The adsorption capacity and adsorption rate of Fe3O4@ZIF-8@AMP were increased by 1.86- and 2.5-fold compared with those of powdered crystal AMP, owing to the large specific surface area and high dispersibility of the adsorbent in the solution. The adsorbent was rapidly separated from the solution within 17 s using an applied magnetic field owing to the good magnetic properties. The composite adsorbent selectively adsorbed Rb+ and Cs+ from the practical brine even in the presence of a large number of coexisting ions. The promising adsorbent can be used to extract Rb+ and Cs+ from aqueous solutions.

10.
Biomaterials ; 308: 122561, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38603827

RESUMEN

Fungi infection is a serious threat to public health, but an effective antifungal strategy remains a challenge. Herein, a biomimetic nanocomposite with multifunctionalities, including fungi diagnosis, antifungal adhesion, precise fungi elimination, and cytokine sequestration, is constructed for battling Candida albicans (C. albicans) infection. By screening a range of cells, we find that the polarized macrophage cells have the strongest binding tendency toward C. albicans. Thus, their membranes were exfoliated to camouflage UCNPs and then decorated with photosensitizers (methylene blue, MB) and DNA sensing elements. The resulting nanocomposite can tightly bind to fungal surfaces, promote DNA recognition, and squeeze pro-inflammatory cytokines to relieve inflammation. Consequently, this nanocomposite can detect C. albicans with enhanced sensitivity and precisely eliminate fungal cells through photodynamic therapy with minimal phototoxicity because of its switchable fluorescence behavior. The developed nanocomposite with good biocompatibility achieves a satisfactory diagnostic and therapeutic effect in a C. albicans-infected mouse model, which offers a unique approach to fight fungi infection.


Asunto(s)
Antifúngicos , Materiales Biomiméticos , Candida albicans , Candidiasis , Nanocompuestos , Nanomedicina Teranóstica , Animales , Nanocompuestos/química , Ratones , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Candidiasis/tratamiento farmacológico , Candidiasis/diagnóstico , Nanomedicina Teranóstica/métodos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antifúngicos/química , Células RAW 264.7 , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Ratones Endogámicos BALB C , Biomimética/métodos , Humanos , Azul de Metileno/química
11.
Am J Ophthalmol ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38621521

RESUMEN

PURPOSE: To compare agreement of corneal epithelium thickness (ET) between AS-OCT system (RTVue, Optovue, Fremont, USA) and AS-OCT/Placido topographer (MS-39, CSO, Florence, Italy) in different stages keratoconus (KC) eyes, and to assess the repeatability of RTVue AS-OCT. DESIGN: Prospective reliability analysis. METHODS: KC eyes were classified into forme fruste KC (FFKC), mild, moderate and severe KC. Agreement was evaluated with Bland-Altman plots and 95% limits of agreement (LoA). The repeatability of RTVue was assessed via within-subject standard deviation (Sw), test-retest variability (TRT), coefficient of variation (CoV), and intraclass correlation coefficient (ICC). RESULTS: Totally, 119 KC eyes were enrolled, with 21 FFKC, 26 mild, 39 moderate, and 34 severe. The 95% LoA ranged between -5.9 and 4.8 µm for center epithelium thickness (CET), between -5.7 and 8.2 µm for thinnest epithelium thickness (TET). At 1mm measuring points, the 95% LoA of superior, inferior, nasal and temporal were -4.2 to 4.7 µm, -5.2 to 6.0 µm, -7.9 to 10.2 µm, -11.2 to 6.0 µm. At 3mm measuring points, the corresponding values were -2.8 to 9.3 µm, -2.0 to 13.0 µm, -4.6 to 9.6 µm, -6.3 to 9.7 µm, indicating the two instruments weren't interchangeable without adjustment. Despite the repeatability of RTVue in KC patients were acceptable, repeatability decreased gradually with the peripheralization of the measurement points. CONCLUSIONS: The two OCT-based devices, RTVue and MS-39, don't provide interchangeable measurements of ET in KC patients. Repeatability decreases in severer KC, emphasizing the importance of grading before clinical examination to avoid diagnostic errors.

12.
Biochem Biophys Res Commun ; 711: 149911, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38603832

RESUMEN

Macrophages play a crucial role in host response and wound healing, with M2 polarization contributing to the reduction of foreign-body reactions induced by the implantation of biomaterials and promoting tissue regeneration. Electrical stimulation (ES) and micropatterned substrates have a significant impact on the macrophage polarization. However, there is currently a lack of well-established cell culture platforms for studying the synergistic effects of these two factors. In this study, we prepared a graphene free-standing substrate with 20 µm microgrooves using capillary forces induced by water evaporation. Subsequently, we established an ES cell culture platform for macrophage cultivation by integrating a self-designed multi-well chamber cell culture device. We observed that graphene microgrooves, in combination with ES, significantly reduce cell spreading area and circularity. Results from immunofluorescence, ELISA, and flow cytometry demonstrate that the synergistic effect of graphene microgrooves and ES effectively promotes macrophage M2 phenotypic polarization. Finally, RNA sequencing results reveal that the synergistic effects of ES and graphene microgrooves inhibit the macrophage actin polymerization and the downstream PI3K signaling pathway, thereby influencing the phenotypic transition. Our results demonstrate the potential of graphene-based microgrooves and ES to synergistically modulate macrophage polarization, offering promising applications in regenerative medicine.


Asunto(s)
Estimulación Eléctrica , Grafito , Macrófagos , Grafito/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Ratones , Células RAW 264.7 , Polaridad Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
13.
Int J Med Sci ; 21(5): 965-977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616996

RESUMEN

Cardiac hypertrophy is the most prevalent compensatory heart disease that ultimately leads to spontaneous heart failure. Mounting evidence suggests that microRNAs (miRs) and endogenous hydrogen sulfide (H2S) play a crucial role in the regulation of cardiac hypertrophy. In this study, we aimed to investigate whether inhibition of miR-27a could protect against cardiac hypertrophy by modulating H2S signaling. We established a model of cardiac hypertrophy by obtaining hypertrophic tissue from mice subjected to transverse aortic constriction (TAC) and from cells treated with angiotensin-II. Molecular alterations in the myocardium were quantified using quantitative real time PCR (qRT-PCR), Western blotting, and ELISA. Morphological changes were characterized by hematoxylin and eosin (HE) staining and Masson's trichrome staining. Functional myocardial changes were assessed using echocardiography. Our results demonstrated that miR-27a levels were elevated, while H2S levels were reduced in TAC mice and myocardial hypertrophy. Further luciferase and target scan assays confirmed that cystathionine-γ-lyase (CSE) was a direct target of miR-27a and was negatively regulated by it. Notably, enhancement of H2S expression in the heart was observed in mice injected with recombinant adeno-associated virus vector 9 (rAAV9)-anti-miR-27a and in cells transfected with a miR-27a inhibitor during cardiac hypertrophy. However, this effect was abolished by co-transfection with CSE siRNA and the miR-27a inhibitor. Conversely, injecting rAAV9-miR-27a yielded opposite results. Interestingly, our findings demonstrated that glucagon-like peptide-1 (GLP-1) agonists could mitigate myocardial damage by down-regulating miR-27a and up-regulating CSE. In summary, our study suggests that inhibition of miR-27a holds therapeutic promise for the treatment of cardiac hypertrophy by increasing H2S levels. Furthermore, our findings unveil a novel mechanism of GLP-1 agonists involving the miR-27a/H2S pathway in the management of cardiac hypertrophy.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Cardíaca , MicroARNs , Animales , Ratones , Cardiomegalia/genética , Péptido 1 Similar al Glucagón , MicroARNs/genética , Cistationina gamma-Liasa
14.
Viruses ; 16(4)2024 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-38675947

RESUMEN

Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of the Qinghai-Tibetan plateau. At present, there is limited research on viral diseases in Tibetan pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs (altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant presence of Microviridae phages observed across all stages of development, in combination with the previous literature, suggest that it may be associated with geographical locations with high altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high level. which may be a contributing factor in promoting gut health. The study found that viruses preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate the dynamic interplay between the gut virome and host development, offering novel insights into the virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide a theoretical basis for further studies on pig production and epidemic prevention under extreme environmental conditions.


Asunto(s)
Altitud , Microbioma Gastrointestinal , Metagenómica , Viroma , Animales , Porcinos , Viroma/genética , Microbioma Gastrointestinal/genética , Tibet , Virus/genética , Virus/clasificación , Metagenoma , Femenino , Genoma Viral
15.
Int J Biol Macromol ; 267(Pt 2): 131674, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641285

RESUMEN

Polysaccharide CSTPs extracted from Camellia sinensis tea-leaves possessed unique against oxidative damage by scavenging ROS. Herein, acid tea polysaccharide CSTPs-2 with tightly packed molecular structure was isolated, purified and characterized in this research. Furthermore, the effects of CSTPs-2 on ROS-involved inflammatory responses and its underlying mechanisms were investigated. The results suggest that CSTPs-2 dramatically reduced the inflammatory cytokines overexpression and LPS-stimulated cell damage. CSTPs-2 could trigger the dephosphorylation of downstream AKT/MAPK/NF-κB signaling proteins and inhibit nuclear transfer of p-NF-κB to regulate the synthesis and release of inflammatory mediators in LPS-stimulated cells by ROS scavenging. Importantly, the impact of CSTPs-2 in downregulating pro-inflammatory cytokines and mitigating ROS overproduction is associated with clathrin- or caveolae-mediated endocytosis uptake mechanisms, rather than TLR-4 receptor-mediated endocytosis. This study presents a novel perspective for investigating the cellular uptake mechanism of polysaccharides in the context of anti-inflammatory mechanisms.


Asunto(s)
Camellia sinensis , Endocitosis , Inflamación , FN-kappa B , Polisacáridos , Especies Reactivas de Oxígeno , Transducción de Señal , Endocitosis/efectos de los fármacos , Camellia sinensis/química , Polisacáridos/farmacología , Polisacáridos/química , Especies Reactivas de Oxígeno/metabolismo , Animales , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Lipopolisacáridos/farmacología , Células RAW 264.7 , Citocinas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Proteínas Proto-Oncogénicas c-akt/metabolismo
16.
Toxicol In Vitro ; 97: 105810, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513818

RESUMEN

Grown evidence has shown that the liver and reproductive organs were the main target organs of perfluorooctanoic acid (PFOA). Herein, we studied a toxic mechanism of PFOA using HeLa Chang liver epithelial cells. When incubated with PFOA for 24 h or 48 h, cell proliferation was inhibited in a concentration- and time-dependent fashion, but interestingly, the feature of dead cells was not notable. Mitochondrial volume was increased with concentration and time, whereas the mitochondrial membrane potential and produced ATP amounts were significantly reduced. Autophagosome-like vacuoles and contraction of the mitochondrial inner membrane were observed in PFOA-treated cells. The expression of acetyl CoA carboxylase (ACC) and p-ACC proteins rapidly decreased, and that of mitochondrial dynamics-related proteins increased. The expression of solute carrier family 7 genes, ChaC glutathione-specific gamma-glutamylcyclotransferase 1, and 5S ribosomal RNA gene was up-regulated the most in cells exposed to PFOA for 24 h, and the KEGG pathway analysis revealed that PFOA the most affected metabolic pathways and olfactory transduction. More importantly, PPAR alpha, fatty acid binding protein 1, and CYP450 family 1 subfamily A member 1 were identified as the target proteins for binding between PFOA and cells. Taken together, we suggest that disruption of mitochondrial integrity and function may contribute closely to PFOA-induced cell proliferation inhibition.


Asunto(s)
Caprilatos , Fluorocarburos , Caprilatos/metabolismo , Hígado/metabolismo , Hepatocitos , Fluorocarburos/metabolismo , Proliferación Celular
17.
Artículo en Inglés | MEDLINE | ID: mdl-38518163

RESUMEN

Objective: We studied the efficacy and safety of traditional Chinese medicine paiteling treatment of persistent human papillomavirus (HPV) infection in males. Methods: The study included 159 male patients with persistent HPV infection between January 2018 and July 2022, and categorized into the treatment group (n = 96) and control group (n = 63) based on the treatment. The treatment group was externally treated with paiteling diluent for 4 consecutive days and then stopped for 3 days. The total course of treatment was one month. The treatment group underwent a second test six months after treatment. The control group did not receive any therapy and underwent a second test in the seventh month. Results: 19 of the 159 patients were lost during the 6-month follow-up period, leaving 140 patients. The male HPV infection peaks between the ages of 26-35 years 73(52.14%), and its prevalence decrease with age. 84 (60.0%) were single type infections, and 22 (15.71%) had at least 3 types infections. There were 76 (54.29%) patients with the high-risk types, 34 (24.29%) with the low-risk types, and 30 (21.43%) with the mixed types. After 6 months, complete negative conversion rates and negative conversion rates were 74.7% and 90.8% in the treatment group respectively, compared to the control group (P < .01). A comparison of negative conversion rates among different types reveals that 16 type (89.5%) and 6 type (92.3%) had statistical differences, (P < .01) and (P < .05) respectively. Multivariate analysis revealed that the vaccine status of sexual partners was a protective factor (OR = 0.050-0.848) and multi-type infection was a risk factor (OR = 1.807-22.527) for the curative effect. Conclusion: Paiteling is convenient, safe, and effective for the treatment of persistent HPV infection in males.

18.
Br J Ophthalmol ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38527771

RESUMEN

AIMS: To evaluate the bilateral changes in the sub-basal nerve plexus of the cornea and ocular surface function after unilateral small incision lenticule extraction (SMILE) and transepithelial photorefractive keratectomy (tPRK) procedures. METHODS: 34 patients were enrolled in the study and underwent unilateral SMILE (21 of 34 patients) or unilateral tPRK (13 of 34 patients). Complete ophthalmic examinations, tear film function tests and Cochet-Bonnet esthesiometry were conducted to assess the effects of the surgeries on the corneal nerves and tear function. Morphological changes were assessed using in vivo confocal microscopy to evaluate the corneal sub-basal nerve plexus and dendritic cells. ELISA was used to measure the tear neuromediators. Clinical and morphological data at each follow-up point were compared with preoperative baseline values. RESULTS: All patients who underwent unilateral SMILE or tPRK procedures exhibited bilateral corneal nerve degenerative changes, decreased corneal sensitivity, worsening of dry eye symptoms and changes in bilateral tear neuromediators. In the SMILE group, bilateral corneal sensitivity was positively correlated with corneal nerve fibre length and negatively correlated with dendritic cell area. The dry eye severity was negatively correlated with corneal sensitivity. Tear levels of substance P and nerve growth factor were positively correlated with mean dendritic cell area and dry eye severity, but negatively correlated with corneal sensitivity. In the tPRK group, bilateral corneal sensitivity was positively correlated with corneal nerve fibre density. CONCLUSIONS: Unilateral refractive surgery may bilaterally affect the morphology and function of corneal nerves and ocular surface status postoperatively.

19.
Cells ; 13(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474405

RESUMEN

Oxidative stress refers to the imbalance between the production of reactive oxygen species (ROS) and the endogenous antioxidant defense system. Its involvement in cell senescence, apoptosis, and series diseases has been demonstrated. Advances in carcinogenic research have revealed oxidative stress as a pivotal pathophysiological pathway in tumorigenesis and to be involved in lung cancer, glioma, hepatocellular carcinoma, leukemia, and so on. This review combs the effects of oxidative stress on tumorigenesis on each phase and cell fate determination, and three features are discussed. Oxidative stress takes part in the processes ranging from tumorigenesis to tumor death via series pathways and processes like mitochondrial stress, endoplasmic reticulum stress, and ferroptosis. It can affect cell fate by engaging in the complex relationships between senescence, death, and cancer. The influence of oxidative stress on tumorigenesis and progression is a multi-stage interlaced process that includes two aspects of promotion and inhibition, with mitochondria as the core of regulation. A deeper and more comprehensive understanding of the effects of oxidative stress on tumorigenesis is conducive to exploring more tumor therapies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Carcinogénesis , Transformación Celular Neoplásica , Neoplasias Hepáticas/patología
20.
J Fish Biol ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509782

RESUMEN

Tumor necrosis factor α1 (TNFα) is a pleiotropic cytokine involved in immune regulation and cellular homeostasis, but the crucial role of TNFα in fish gut remained unclear. The current study aimed to evaluate the immunoregulatory function of TNFα1 on gut barrier in a novel hybrid fish (WR), which was produced by crossing white crucian carp (Carassius cuvieri, ♀) with red crucian carp (Carassius auratus red var, ♂). In this study, WR-tnfα1 sequence was identified, and a high-level expression was detected in the intestine. Elevated levels of WR-tnfα1 expressions were detected in immune-related tissues and cultured fish cells on stimulation. The appearance of vacuolization and submucosal rupture was observed in TNFα1-treated midgut of WR, along with elevated levels of goblet cell atrophy, whereas no significant changes were detected in most expressions of tight-junction genes and mucin genes. In contrast, WR receiving gut perfusion with WR-TNFα1 showed a remarkable decrease in antioxidant status in midgut, whereas the expression levels of apoptotic genes and redox responsive genes increased sharply. These results suggested that TNFα1 could exhibit a detrimental effect on antioxidant defense and immune regulation in the midgut of WR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA